
www.manaraa.com

7th IPM International Conference on

Fundamentals
of Software Engineering

26 - 28 April, 2017

Tehran, Iran

Edited by

Mehdi Dastani
Marjan Sirjani

IPM School of Computer Science

www.manaraa.com

www.manaraa.com

Preface

The present volume contains the pre-proceedings of the seventh IPM Interna-
tional Conference on Fundamentals of Software Engineering (FSEN), Tehran,
Iran, April 26-28, 2017. This event is organized by the School of Computer Sci-
ence at the Institute for Research in Fundamental Sciences (IPM) in Iran. The
topics of interest in FSEN span over all aspects of formal methods, especially
those related to advancing the application of formal methods in software indus-
try and promoting their integration with practical engineering techniques. The
program committee of FSEN 2017 consists of 41 top researchers from 17 coun-
tries. We have received a total of 49 submissions from 27 countries out of which
we have accepted 16 regular papers and 2 posters. Each submission is reviewed
by at least 3 independent referees, for its quality, originality, contribution, clarity
of presentation, and its relevance to the conference topics.
Three distinguished keynote speakers, Thomas Henzinger, Philippa Gardner,
and Leon van der Torre deliver their lectures at FSEN 2017.
We thank the Institute for Research in Fundamental Sciences (IPM), Tehran,
Iran for their financial support and local organization of FSEN 2017. We also
thank the members of the program committee for their time, effort, and excellent
contributions to making FSEN a quality conference.
We thank Hossein Hojjat for his help in preparing this volume. Last but not
least, our thanks go to our authors and conference participants, without whose
submissions and participation FSEN would not have been possible.

February 9, 2017 Mehdi Dastani
Marjan Sirjani

i

www.manaraa.com

Table of Contents

Model Checking of Concurrent Software Systems via Heuristic-Guided
SAT Solving . 1

Nils Timm, Stefan Gruner and Prince Sibanda

A Formal Model for Multi SPLs* . 16
Ferruccio Damiani, Michael Lienhardt and Luca Paolini

Translating Active Objects into Colored Petri Nets for Communication
Analysis . 32

Anastasia Gkolfi, Crystal Chang Din, Einar Broch Johnsen, Martin
Steffen and Ingrid Chieh Yu

Composing families of Timed Automata . 48
Guillermina Cledou, José Proença and Luis Barbosa

Debugging of Concurrent Systems using Counterexample Analysis 63
Gianluca Barbon, Vincent Leroy and Gwen Salaün

Synthesizing Parameterized Self-Stabilizing Rings With Constant-Space
Processes . 78

Alex P. Klinkhamer and Ali Ebnenasir

Bisimilarity of Open Terms in Stream GSOS . 93
Filippo Bonchi, Matias David Lee and Jurriaan Rot

TCE+: an Extension of the TCE Method for Detecting Equivalent
Mutants in Java Programs . 109

Mahdi Houshmand and Samad Paydar

Using Swarm Intelligence to Generate Test Data for Covering Prime Paths 125
Atieh Monemi Bidgoli, Hassan Haghighi and Hamideh Sabouri

Purpose-based Policy Enforcement in Actor-based Systems 140
Shahrzad Riahi, Ramtin Khosravi and Fatemeh Ghassemi

Quality-Aware Reactive Programming for the Internet of Things 156
José Proença and Carlos Baquero

Implementing Open Call-by-Value . 171
Beniamino Accattoli and Giulio Guerrieri

Gray-Box Conformance Testing for Symbolic Reactive State Machines . . . 189
Masoumeh Taromirad and Mohammadreza Mousavi

LittleDarwin: a Feature-Rich and Extensible Mutation Testing
Framework for Large and Complex Java Systems . 204

Ali Parsai, Alessandro Murgia and Serge Demeyer

ii

www.manaraa.com

Automatic Transition System Model Identifications for Network
Applications from Packet Traces . 219

Zeynab Sabahi Kaviani, Fatemeh Ghassemi and Fateme Bajelan

Flexible Transactional Coordination in the Peer Model 235
Eva Kühn

Performance Test Requirements Extraction Using Formal Specifications . . 250
Zahra Rahimi Nassab, Hamideh Sabouri, Mohamad Jafari Monfared
and Hassan Haghighi

A Privacy-Preserving Synchronization Protocol in Actor Models 254
Mahboubeh Samadi, Fatemeh Ghassemi and Ramtin Khosravi

iii

www.manaraa.com

Program Committee

Mohammad Abdollahi Azgomi Iran University of Science and Technology
Erika Abraham RWTH Aachen University
Gul Agha University of Illinois at Urbana-Champaign
Christel Baier Technical University of Dresden
Ezio Bartocci TU Wien
Marcello Bonsangue Leiden University
Mario Bravetti University of Bologna
Michael Butler University of Southampton
Mehdi Dastani Utrecht University
Erik De Vink Technische Universiteit Eindhoven
Wan Fokkink Vrije Universiteit Amsterdam
Adrian Francalanza University of Malta
Masahiro Fujita University of Tokyo
Maurizio Gabbrielli University of Bologna
Fatemeh Ghassemi University of Tehran
Jan Friso Groote Eindhoven University of Technology
Kim Guldstrand Larsen Aalborg University
Hassan Haghighi Shahid Beheshti University
Philipp Haller KTH Royal Institute of Technology
Holger Hermanns Saarland University
Hossein Hojjat Rochester Institute of Technology
Mohammad Izadi Sharif University of Technology
Einar Broch Johnsen University of Oslo
Joost-Pieter Katoen RWTH Aachen University
Narges Khakpour Linnaeus University
Ramtin Khosravi University of Tehran
Natallia Kokash Leiden University
Eva Kühn Vienna University of Technology
Zhiming Liu Southwest University
Mieke Massink CNR-ISTI
Hassan Mirian-Hosseinabadi Sharif University of Technology
Ugo Montanari Universita’ di Pisa
Peter Mosses Swansea University
Mohammadreza Mousavi Halmstad University
Ali Movaghar Sharif University of Technology
Meriem Ouederni IRIT/INP Toulouse/ ENSEEIHT
Wishnu Prasetya Universiteit Utrecht
Jose Proenca University of Minho
Wolfgang Reisig Humboldt-Universitaet zu Berlin
Philipp Ruemmer Uppsala University
Gwen Salaün University of Grenoble Alpes
Cesar Sanchez IMDEA Software Institute
Ina Schaefer Technische Universität Braunschweig

iv

www.manaraa.com

Wendelin Serwe INRIA Rhône-Alpes / CONVECS
Alexandra Silva University College London
Marjan Sirjani Malardalen University, Reykjavik University
Meng Sun Peking University
Carolyn Talcott SRI International
Danny Weyns Linnaeus University

Peter Ölveczky University of Oslo

v

www.manaraa.com

Additional Reviewers

A M
Al-Brashdi, Ahmed Mohaqeqi, Morteza
B P
Baghoolizadeh, Shirin Padovani, Luca
Barbon, Gianluca Pun, Ka I
Bliudze, Simon R
Bruintjes, Harold Radschek, Sophie Therese
Bruni, Roberto Rezazadeh, Abdolbaghi
Bubel, Richard Rivadeh, Mehran
C S
Cassar, Ian Schwayer, Matthias
Castiglioni, Valentina T
Chrszon, Philipp Taromirad, Masoumeh
Ciancia, Vincenzo Ter Beek, Maurice H.
Craß, Stefan Tuosto, Emilio
D V
Dan, Li Varshosaz, Mahsa
Dardha, Ornela W
G Wang, Shuling
Gkolfi, Anastasia Winter, Joost
Grech, Neville Wunderlich, Sascha
H
Habibi, Elaheh
Hafez Qorani, Saleh
Haller, Philipp
He, Nannan
J
Jansen, Nils
K
Kunze, Sebastian
L
Lachmann, Remo
Lanese, Ivan
Li, Yi
Lity, Sascha
Liu, Tong
Lorber, Florian

vi

www.manaraa.com

Keynote Speeches

www.manaraa.com

Quantitative Methods in Formal Verification

Thomas A. Henzinger

IST Austria
tah@ist.ac.at

Abstract. Formal verification aims to improve the quality of hardware
and software by detecting errors before they do harm. At the basis of
formal verification lies the logical notion of correctness, which purports
to capture whether or not a circuit or a program behaves as desired.
We suggest that the boolean partition into correct and incorrect systems
falls short of the practical need to assess the behavior of hardware and
software in a more nuanced fashion against multiple criteria. We propose
quantitative preference metrics for reactive systems, which can be used
to measure the degree of desirability of a system with respect to primary
attributes such as function and performance, but also with regard to
secondary attributes such as robustness and resource consumption. The
theory supports quantitative generalizations of the paradigms that have
become success stories in boolean formal methods, such as temporal logic,
property-preserving abstraction, model checking, and reactive synthesis.

viii

www.manaraa.com

Understanding and Verifying JavaScript Programs

Philippa Gardner
Imperial College London

p.gardner@imperial.ac.uk

Abstract. The dynamic nature of JavaScript, together with its complex seman-
tics, makes it a difficult target for logical analysis. This talk will describe JaVerT,
a JavaScript Verification Toolchain, which we believe provides the first logic-based
symbolic analysis tool for JavaScript. The talk is aimed at a general audience inter-
ested in program verification. Knowledge of JavaScript is not assumed.
JaVerT works by first translating JavaScript programs and specifications to a small
intermediate goto language, called JSIL, and then performing verification on JSIL
programs. JaVerT comprises: a compiler from JavaScript to JSIL; a semi-automatic
verification tool, called JSILVerify, based on a JSIL program logic; and a logic trans-
lator from JavaScript assertions to JSIL assertions. JSIL has essentially the same
memory model as JavaScript, but a much simpler behaviour, which reduces the
workload required to build and adapt analysis tools.
A key aim of the project has been to establish trust in the JaVert toolchain. The
compiler is line-by-line faithful to the standard and is comprehensively tested using
the official test suite (passing 100of the appropriate tests). The JSIL program logic
is sound with respect to the JSIL operational semantics. The logic translator is
based on a sound and complete translation. Therefore, the results obtained using
JSILVerify can be lifted back to JavaScript.
We target functionally-correct specifications of critical JavaScript software, in partic-
ular focussing on small Node.js libraries that have high usability: for example, those
describing well-known data structures such as a priority queue. We have built up
layers of abstract predicates so that our specification of a priority queue is straight-
forward, despite the underlying complexity of JavaScript, most of which is hidden
from the programmer.
In contrast to Node.js library code, client-side JavaScript code often interacts with
the DOM API. We are working on a DOM plugin for JaVerT in order to extend
our reasoning to such code. We are also developing an automatic JavaScript verifi-
cation tool, targeting much larger code bases using a technique called bi-abduction
which underpins Facebooks Infer verificaiton tool. In addition, we believe that our
JSIL infrastructure can be used for other styles of JavaScript analysis. We are build-
ing JavaScript front-ends for CBMC (Amazon) and Rosette (IBM) analysis tools.
Our ultimate goal is to establish our JSIL infrastructure as a common platform for
JavaScript verification.
This talk describes joint work with Jose Fragoso Santos, Petar Maksimovic, Daiva
Naudziuniene and Thomas Wood.

ix

www.manaraa.com

Reasoning about Enterprise Architecture Plans

Leon van der Torre

University of Luxembourg
leon.vandertorre@uni.lu

Abstract. An enterprise architecture is a conceptual blueprint that de-
fines the structure and operation of an organization. The intent of an
enterprise architecture is to determine how an organization can most
effectively achieve its current and future (often long-term) objectives.
An important task of an enterprise architect is to ensure that the en-
terprise stays committed towards it long-term goals, despite the high
level of uncertainty and many underlying assumptions that come with
the long term plans. Since it is inherently difficult to plan such design,
any planning theory to be used should be able to represent abstract and
ambiguous plans, alternative and back-up plans, and mechanisms for the
revision of plans. Classical planning techniques are often not sufficient,
and it have therefore been extended with theories of intentions. Intention
commitment and revision strategies originate from the philosophical the-
ory of action, and were introduced in the mid eighties in planning theory
to reason about plan revision, and over the past decades the theory has
been improved and simplified and applied to, for instance, agent-based
software engineering. It has been called the belief-desire-intention or BDI
theory. In these theories, intentions are traditionally understood as com-
mitment towards goals, leading to many complex interactions between
various mental attitudes such as beliefs, goal, intentions, commitments,
desires, actions, and preferences. This complex web of interactions makes
it difficult to apply such theories to enterprise architecture. We therefore
simplify this theory and study commitments towards time. This changes
the perspective of intentions to a computer science database perspective
of revising plans in the context of beliefs, and bridges the gap between
logical theories of intention on the one hand, and planning techniques in
computer science on the other hand.

x

www.manaraa.com

Regular & Short Papers

www.manaraa.com

Model Checking of Concurrent Software
Systems via Heuristic-Guided SAT Solving

Nils Timm, Stefan Gruner, and Prince Sibanda

Department of Computer Science, University of Pretoria, South Africa
{ntimm,sgruner}@cs.up.ac.za

Abstract. An established approach to software verification is SAT-
based bounded model checking where a state space model is encoded
as a Boolean formula and the exploration is performed via SAT solving.
Most existing approaches in SAT-based model checking rely on general-
purpose solvers that do not exploit the structural features of the en-
coding. Aiming at a significantly better runtime performance in such
settings, we show in this paper that SAT algorithms can be specifically
tailored w.r.t. the structure of the Boolean encoding of the model check-
ing problem to be solved. We define a state space encoding of concurrent
software systems that preserves control flow information. This allows
to modify the solver such that the number of SAT decision levels can
be significantly reduced by assigning a set of atoms at each level. Such
set assignment always characterises a location in the control flow of the
encoded system. Moreover, we introduce heuristics that guide the SAT
search into directions where a violation of the property of interest may be
most likely detected. The heuristic approach enables to quickly discover
errors while keeping the actually explored part of the state space small.

1 Introduction: Motivation and Related Work

In SAT-based bounded model checking (BMC) [1] the state space of a system
to be verified is encoded as a propositional logic formula, and the state space
exploration happens via satisfiability (SAT) solving. Thereby, each satisfying as-
signment of the formula characterises an error path, whereas an unsatisfiability
result implies the correctness of the system under consideration. The advantage
of BMC in comparison to explicit-state approaches is that the encoding yields
a more compact symbolic state space representation, and that the capability of
efficient solvers can be exploited to solve the encoded verification tasks. In BMC
most existing approaches rely on general-purpose solvers that do not exploit
the specific structure of the propositional logic encoding or any other available
knowledge about the underlying verification task. In this paper we show that
SAT algorithms can be specifically tailored towards solving encodings of ver-
ification tasks, which enables a significantly better solving performance. Here
we focus on the verification of reachability properties (e.g. deadlocks, mutual
exclusion violation) of concurrent software systems. We define a propositional
logic state space encoding that can be directly constructed for a given input

1

www.manaraa.com

system. The encoding preserves control flow information that can be utilised
to accelerate the SAT solving procedure. SAT solving algorithms are typically
based on a systematic search for a satisfying assignment of the input formula by
incrementally selecting an unassigned atom, assigning it by either 1 or 0, and
propagating the resulting constraints to all clauses of the formula. In case the
solver’s decisions lead to an unsatisfied sub formula, the solver tracks back to
a previous decision level and continues its search from that point in a different
branch of the search tree until a satisfying assignment is found or until the search
tree is exhaustively explored [2]. We introduce an enhanced SAT algorithm that
exploits the structure of our encodings in order to reduce the computational
effort for solving the encoded verification task. In our approach the number
of decision levels can be significantly narrowed down by instantiating a set of
atoms at each level. Such a set instantiation always characterises a location in
the control flow of the encoded system. Based on a simple query on whether such
location is an admissible successor location of the current location, the number
of branches that actually have to be explored can considerably reduced. More-
over, we show that the additional employment of heuristic guidance allows for a
further enhancement of the solving performance. For this, we adapt the concept
of directed model checking [5] which had been introduced for the exploration of
explicit-state models, but was not yet considered for SAT-based model checking.
We demonstrate that heuristics based on the property to be verified allow to
guide the SAT search into directions where a property violation may be most
likely detected. We prototypically implemented our encoding and our enhanced
SAT approach with set assignments and heuristic guidance on top of the solver
Sat4J [6]. Preliminary experiments show promising performance results.

Our technique is related to a number of existing approaches. In [8] we find
an overview of principles of using SAT solvers as model checkers, including atom
ordering strategies. It is assumed that the encoding is constructed based on an
already given state space model – not based directly on the system to be verified.
In [9] an algorithm is given to predict a beneficial ordering of the atoms before
the SAT search descends into the tree. Performance improvement is achieved
by knowing the unsatisfiable core of the (b − 1)-bounded encoding which the
solver explored in a previous iteration of incremental BMC [9]. A survey of di-
rected model checking can be found in [5]. The focus in [5] is on the algorithmic
techniques directed model checking approaches, including a classification of such
techniques into categories like guided search, explicit-state directed model check-
ing, and directed model checking based on binary decision diagrams. However, no
approach for a directed search in SAT-based BMC is proposed. In [4] a heuristic-
guided tool based on the model checker Spin is described. The used heuristics
are tuned w.r.t specific characteristics of Spin’s input language Promela. Thus,
the directed state space exploration algorithm assumes an explicit state space
model rather than a symbolic encoding. SAT-based model checking of concurrent
systems is also the topic of [11] which is based on the insight that concurrent
executions cannot drive arbitrary values through the system, and thus it is not
necessary to encode how the computation operates on all values, but rather just

2

www.manaraa.com

on the values that actually arise in such executions. On the basis of an event
graph representation of the systems behaviour a SAT problem is constructed and
solved in an iterative process of modelling, solving, and re-modelling. The idea
of this approach is to use the solver to encode the execution, not the system.
Conflict-directed clause learning (CDCL) is the topic of [12] which deals with
the question of how to design a predictive measure of learnt clauses pertinence.
The authors were able to show the relationship between the overall decreasing
of decision levels and the performance of the solver. Thereby, a good learning
schema should add explicit links between independent blocks of propagated lit-
erals, which should be beneficial for reducing the number of decision levels in
the remaining computation. In our work we reduce the number of decision lev-
els based on semantic dependencies of the literals (control flow information). In
[14] a heuristic improvement of the Java PathFinder is described: To find errors
faster, it is important to explore parts of the state space whose possibility of
containing errors is higher than others, whereby heuristic techniques prioritise
potential solution candidates according to particular efficiency considerations.
The authors propose a depth-first search which can be applied to verification of
LTL properties of Java bytecode. With regard to heuristic model checking, the
authors of [13] evaluated the resulting search behaviour on a number of of mod-
els from the BEEM database within the HSF-SPIN explicit-state model checker.
The technique of [13] applies a distance function to estimate the distance from
a given state to an error state, and explores states with the shortest estimated
distance first. Guided by the distance function, error paths can often be found
after exploring only a small part of the overall state space.

2 Concurrent Software Systems

We start with an introduction to the systems we consider. A concurrent soft-
ware system Sys consists of a fixed number of possibly non-uniform processes
P1 ‖ . . . ‖ Pn , in parallel composition. Inter-process communication is assumed
to happen via global variables in shared memory. In Var = Vars ∪

⋃n
i=1 Vari

the set Vars contains the shared variables whereas Var1 . . .Varn are sets of lo-
cal variables associated exclusively with the processes P1 . . .Pn . Moreover, we
assume that Boolean predicate abstraction [3] has been applied, which results in
a system where all variables are Boolean variables, or more specifically, replaced
by Boolean predicates over the original variables. Hence, in our approach vari-
ables and predicates are synonymous. Predicate abstraction is a well-established
technique in software model checking to reduce the state space complexity of
a verification task. In our approach we use the tool 3Spot [15] to transfer a
concrete input system into an abstract system defined over predicates. 3Spot
formally represents (abstracted) processes Pi as control flow graphs (CFGs)
Gi = (Loci , δi , τi) where Loci = {0, . . . , |Loci |} is a finite set of control locations
given as binary numbers, δi ⊆ Loci × Loci is a location transition relation, and
τi : Loci ×Loci → Op is a function labelling location transitions with operations
from a set Op. The set of operations Op on the variables form Var = {v1, . . . , vm}

3

www.manaraa.com

consists of all statements of the form assume(e) : v1 := e1, . . . , vm := em in
which e, e1, . . . , em are Boolean expressions over Var . Thus every operation con-
sists of a guard and a list of assignments. For convenience we sometimes just
write e instead of assume(e). Moreover, we omit the guard if it is just true.

A concurrent software system given by n single control flow graphs G1, . . . ,Gn

can be modelled by one compound control flow graph G = (Loc, δ, τ) where
Loc = Loc1×· · ·×Locn , δ ⊆ Loc×Loc and τ : Loc×Loc → Op. G is the product
graph of all single CFGs. We assume that initially all processes of a system at lo-
cation 0. Moreover, we assume that a deterministic initialisation of the variables
is given by an assertion over Var . Now, a computation of a concurrent system
corresponds to a sequence where in each step one process is non-deterministically
selected and the operation at its current location is attempted to be executed.
In case the execution is not blocked by the guard, the variables are updated
according to the assignment part, and the process advances to the consequent
control location. Note that a CFG is a formal representation of a system but
not a state space model. The state space over Var corresponds to the set SV ar
of all type-correct valuations of the variables. Given a state s ∈ SV ar and an
expression e over Var , then s(e) denotes the valuation of e in s. The overall
state space S of a concurrent system corresponds to the set of states over Var
combined with the possible locations, i.e.: S = Loc × SV ar. Thus each state in
S is a tuple 〈l , s〉 with l = (l1, . . . , ln) ∈ Loc and s ∈ SV ar. An example for a
system where each process is represented by a control flow graph is shown in
Figure 1. We represent the truth value t by 1, and f by 0. In the example we
have two uniform processes operating on the shared Boolean variables p and
q . The initial state of the system is 〈(00, 00), p = 1, q = 1〉. The system im-
plements a solution to the dining philosophers problem where each philosopher
process continuously attempts to acquire the two exclusive resources p and q .
Once a process has acquired both resources it releases them in a single step and
attempts to acquire them again. The order in which the resources are requested
is non-deterministically determined, which makes as deadlock possible: G1 has
acquired p and is waiting for q while G2 has acquired q and is waiting for p.
CFGs allow us to model the control flow of a concurrent system. Checking prop-
erties of a system requires to explore a corresponding state space model. Typi-
cally, Kripke structures are used as state space models. A Kripke structure (KS)
over a set of atomic predicates AP is a tuple M = (S , s0,R,L) where

– S is a finite set of states and s0 ∈ S is the initial state,
– R ⊆ S × S is a state transition relation with ∀ s ∈ S : ∃ s ′ ∈ S : R(s, s ′),
– L : S × AP → {1,0} is a labelling function that associates a truth value

with each predicate in each state.

A path π of a KS M is a sequence of states s0s1s2 . . . with R(si , si+1). πi denotes
the i -th state of π, whereas πi denotes the i -th suffix πiπi+1 . . . of π. By ΠM

we denote the set of all paths of M starting in the initial state. All paths of a
KS have to be explored in order to determine whether certain error states are
reachable. Let p ∈ AP be a predicate that characterises error states. Then an
error state is reachable in M if and only if

∨
π∈ΠM

∨
i∈N L(πi , p) holds.

4

www.manaraa.com

Fig. 1. Concurrent system over the Boolean variables Var = {p, q} given by the single
control flow graphs G1 and G2, whereby initially p =1 and q =1

.

Verifying such conditions for a given KS is known as model checking. As defined
in [15] a concurrent system Sys = ‖ni=1 Pi given by a set of CFGs G1 to Gn can be
translated into a KS M over AP = Var ∪{(li = j) | i ∈ [1..n], j ∈ Loci} where
the predicate (li = j) denotes that the process Pi is currently at control location
j . The number of states of a KS corresponding to a given system is exponential in
the number of its locations and variables. For instance, a KS corresponding to our
simple example system has already 64 states. State space explosion is the major
challenge in model checking. Beside the aforementioned predicate abstraction,
a common approach to cope with state space explosion is to use a symbolic
and therefore more compact representation of the KS. In SAT-based bounded
model checking [1] all possible path prefixes up to a bound b ∈ N are encoded
in a propositional logic formula Init0 ∧ T0,1 ∧ . . . ∧ Tb−1,b . The formula is then
conjuncted with an encoding Errorb of the error property to be checked. In case
the overall formula is satisfiable, the satisfying assignment characterises an error
path of length b in the state space of the encoded system. Next, we define such
a propositional logic encoding for concurrent systems given by abstract control
flow graphs and for errors that can be expressed as reachability properties.

3 Propositional Logic Encoding

We now describe how a propositional logic encoding Init0 ∧T0,1 ∧ . . .∧Tb−1,b ∧
Errorb can be directly constructed for a concurrent system given by control flow
graphs Gi = (Loci , δi , τi), 1 ≤ i ≤ n and for a given error property with b ∈ IN
being the bound of the encoding. This saves us the expensive construction of an
explicit state space model. The encoding is defined over Boolean atoms. Since a
state of a system is a tuple 〈l , s〉 where l ∈ Loc is a compound location and s is
a valuation of all Boolean variables in Var , we encode l and s separately.

A composite location (l1, . . . , ln) ∈ Loc is a list of single locations li ∈ Loci
where Loci = {0, . . . , |Loci |} and i is the identifier of the associated process Pi .
Each li is a binary number from {[0]2, . . . , [|Loci |]2}. We assume that all these

5

www.manaraa.com

numbers have di digits where di is the number required to binary represent the
max. value |Loci |. Then, for each Pi , we introduce di Boolean atoms, each of
which refers to a distinct digit along the binary representation of its locations:
LocAtoms := {li [j] | i ∈ [1..n], j ∈ [1..di]}. Then li can be encoded as:

enc(li) :=
∧di

j=1((li [j] ∧ li(j)) ∨ (¬li [j] ∧ ¬li(j)))

where li(j) is a function evaluating to 1 if the j -th digit of li is 1, and to 0
otherwise. A composite location l = (l1, . . . , ln) can subsequently be encoded as:

enc(l) :=
∧n

i=1 enc(li)

Because the function li(j) evaluates to 1 or 0, a location encoding enc(li) can
be always simplified to a conjunction of literals over LocAtoms. In our example
the initial location (00, 00) will be encoded to ¬l1[1] ∧ ¬l1[2] ∧ ¬l2[1] ∧ ¬l2[2].

Next we encode the variable (resp. predicate) part of states. For s ∈ SV ar,
where Var = {v1, . . . , vm} is the set of Boolean variables over which the concur-
rent system is defined, we introduce VarAtoms := {v [j] | vj ∈ Var}. Hence,
each variable vi is encoded by an atom v [i], which allows a straightforward en-
coding of arbitrary logical expressions e over Var . For instance, enc(v1∧¬v2) :=
v [1] ∧ ¬v [2]. The initial state 〈(00, 00), p = 1, q = 1〉 of our example system can
now be encoded as Init = ¬l1[1] ∧ ¬l1[2] ∧ ¬l2[1] ∧ ¬l2[2] ∧ p ∧ q . Since in our
simple example the variables p and q are not subscripted, we also omit the index
values for the identically named atoms p and q .

For encoding the transition relation of a concurrent system we construct a
formula Init0∧T0,1∧. . .∧Tb−1,b that exactly characterises path prefixes of length
b ∈ IN in the systems state space. Because we consider states as parts of such
prefixes, we have to extend the encoding by index values k ∈ {0, . . . , b} where
k denotes the position along a path prefix. For this we introduce the notion
of indexed encodings. Let F be a propositional logic formula over Atoms =
LocAtoms ∪ PredAtoms and the constants 1 and 0. Then Fk abbreviates the
substitution F [a/ak | a ∈ Atoms]. Our overall encoding will be thus defined
over Atoms[0,b] = {ak | a ∈ Atoms, 0 ≤ k ≤ b}. Since all execution paths
start in the system’s initial state, we extend the initial state encoding by the
index 0: Init0 = ¬l1[1]0 ∧ ¬l1[2]0 ∧ ¬l2[1]0 ∧ ¬l2[2]0 ∧ p0 ∧ q0. The encoding of
all possible state space transitions from position k to k + 1 is defined as follows.
Let Sys = ‖ni=1 Pi over Var be a concurrent system given by the single control
flow graphs Gi = (Loci , δi , τi) with 1 ≤ i ≤ n. Then all possible transitions for
position k to k + 1 can be encoded in propositional logic as follows:

Tk ,k+1 :=
∨n

i=1

∨
(li ,l′i)∈δi (enc(li)k ∧ enc(l ′i)k+1 ∧

∧
i′ 6=i idle(i ′)k ,k+1 ∧ enc(τi(li , l

′
i))k ,k+1)

where idle(i ′)k ,k+1 :=
∧di′

j=1 (li′ [j]k ↔ li′ [j]k+1)

and enc(τi(li , l
′
i))k ,k+1 := enc(e)k ∧

∧m
j=1 ((enc(ej)k ↔ enc(vj)k+1)

assuming that τi(li , l
′
i) = assume(e) : v1 :=e1, . . . , vm :=em .

6

www.manaraa.com

Thus, we iterate over the system’s processes Pi and over the processes’ control
flow transitions δi(li , l

′
i). Now we construct the k -indexed encoding of a source

location li and conjunct it with the (k + 1)-indexed encoding of a destination
location l ′i . This gets conjuncted with the sub formula

∧
i′ 6=i idle(i ′)k ,k+1 which

encodes that all processes different to Pi are idle, i.e. do not change their control
flow location, while Pi proceeds. The last part of the transition encoding con-
cerns the operation associated with δi(li , l

′
i): The sub formula enc(τi(li , l

′
i))k ,k+1

evaluates to 1 for assignments to the atoms in Atoms[k ,k+1] that characterise
pairs of states s and s ′ over Var where the guard of the operation τi(li , l

′
i) is 1

in s and the execution of the operation in s results in the state s ′. Otherwise
enc(τi(li , l

′
i))k ,k+1 evaluates to 0. Our transition encoding requires that an oper-

ation τi(li , l
′
i) assigns to all Boolean variables. Thus, if a v ∈ Var is not modified

by the operation we implicitly assume that v := v is part of the assignment
list. The encoding of the control flow transition δ1(00, 01) of our example system
with τ1(00, 01) = (assume(p) : p := 0) yields the following:

enc(00)k = ¬l1[1]k ∧ ¬l1[2]k
∧ ∧
enc(01)k+1 = l1[1]k+1 ∧ l1[2]k+1

∧ ∧
idle(2)k ,k+1 = (l2[1]k ↔ l2[1]k+1) ∧ (l2[2]k ↔ l2[2]k+1)
∧ ∧
enc(τ1(0, 1))k ,k+1 = pk ∧ ((0↔ pk+1) ∧ (qk ↔ qk+1))

The encoding of the operation only evaluates to 1 for assignments to the atoms in
Atoms[k ,k+1] that characterise the control flow transition δ1(00, 01) with idling
G2, the variable state s at position k with s(p) = 1 and a state s ′ at k + 1
with s ′(p) = 0, and moreover, s(q) = s ′(q). All other assignments yield false
indicating that corresponding pairs of states do not characterise valid transitions.

The previous definitions now allow us to construct a formula Init0 ∧ T0,1 ∧
. . . ∧ Tb−1,b that characterises all possible path prefixes of length b ∈ IN in the
state space of the encoded system. Each assignment α : Atoms[0,b] → {1,0}
that satisfies the formula characterises such a prefix. Next, we introduce the
encoding of the property to be checked for the concurrent system. In general,
want to verify whether a state is reachable that satisfies a particular predicate.
Such a predicate can be an arbitrary Boolean expression over Loc and Var . For
our example system, a deadlock circular-wait situation can be described by

((l1 = 01) ∧ ¬q ∧ (l2 = 10) ∧ ¬p) ∨ ((l1 = 10) ∧ ¬p ∧ (l2 = 01) ∧ ¬q)

which can be straightforwardly encoded into a propositional logic formula

Error := (¬l1[1] ∧ l1[2] ∧ ¬q ∧ l2[1] ∧ ¬l2[2] ∧ ¬p)
∨ (l1[1] ∧ ¬l1[2] ∧ ¬p ∧ ¬l2[1] ∧ l2[2] ∧ ¬q)

over Boolean atoms. Finally we index such an Error formula with a search-
bound b ∈ IN and conjunct it with our system’s state space encoding, yielding

7

www.manaraa.com

F[0,b] := Init0 ∧ T0,1 ∧ . . . ∧ Tb−1,b ∧ Errorb , such that each assignment satis-
fying this formula witnesses a path prefix of length b ending in an error state
in the state space of the encoded system. Hence the propositional logic encod-
ing allows us to model check a system of interest via SAT solving, without the
intermediate construction of an explicit Kripke structure. SAT-based BMC is
typically performed incrementally by increasing the bound b until an error state
or a threshold is reached. State-of-the-art SAT solvers e.g. [6] can be used for the
satisfiability checks. In the remainder of this paper we introduce our enhanced
SAT solving concepts that are tailored towards solving our propositional logic
encodings of verification tasks for concurrent systems. For the sake of illustra-
tion, we present our approach based on a simple SAT solving algorithm that
implements our enhanced concepts but not all features of modern solvers like
conflict-driven clause learning [2], conflict clause minimisation [17] etc. Neverthe-
less, our concepts can be straightforwardly integrated into any state-of-the-art
solver and combined with the advancements used in such solvers. For instance,
our tool that we later present is implemented on top of the solver Sat4J [6].

4 Enhanced SAT Solving for Encoded Verification Tasks

Modern SAT solvers are based on a systematic search for a satisfying assign-
ment of the input formula in conjunctive normal form (CNF) by incrementally
selecting unassigned atoms, assigning them by either 1 or 0, and propagating
the resulting constraints to the clauses of the formula. In case the solver deci-
sions lead to an unsatisfied clause, the solver tracks back by revising a former
assignment decision and continuing the search from this point until a satisfying
assignment is found or the search space is entirely explored [2]. While general-
purpose solvers do not make any assumption about the structure of the input
formula, our enhanced SAT solving approach exploits the structure of our encod-
ing F[0,b] and control flow information about the considered concurrent system.
We will see that this enables us to reduce the number of recursive calls of the SAT
algorithm. We reduce both the number of decision levels as well as the number of
branches to be explored which enables to significantly improve the efficiency of
SAT-based BMC in our chosen area of application. First, the structure of F[0,b]

allows us to transform the conjuncted parts of the formula separately into CNF:

cnf (Init0) ∧ cnf (T0,1) ∧ ... ∧ cnf (Tb−1,b) ∧ cnf (Errorb)

which can be done via the Tseytin transformation [16]. From now on we just write
F[0,b] when we refer to the CNF-equivalent of the formula. The atoms of the en-

coding F[0,b] can be divided into disjoint sets: Atoms(F[0,b]) =
⋃b

k=0 LocAtomsk∪
VarAtomsk where LocAtomsk resp. VarAtomsk refers to the set of location resp.
variable atoms with position index k . Our encoding has the useful property that
the application of an assignment α : LocAtomsk → {0,1} results in a formula
α(F[0,b]) where all a ∈ VarAtomsk (i.e. all k -indexed variable atoms) occur in
unit clauses. Hence, the subsequent application of unit propagation [18] will

8

www.manaraa.com

immediately assign truth values to all atoms in VarAtomsk . This allows us to
solely consider location atoms as branching atoms, since all variable atoms will
be automatically assigned under unit propagation.1

General-purpose SAT algorithms choose a single atom a as the branching
atom at each decision level and then branch for (a,0) (a is assigned by 0)
and (a,1) (a is assigned by 1). In our enhanced algorithm we choose the set
LocAtomsk+1 at each decision level k . (The use of unit propagation [18] will
ensure that all atoms with index k ′ ≤ k will be already assigned at level k .) Now
instead of branching for each possible assignment to the atoms in LocAtomsk+1,
the structure of our encoding together with knowledge about the control flow
allows us to reduce the number of assignments (i.e. branches) to admissible ones.
Note that an assignment α : LocAtomsk+1 → {0,1} characterises a location
l ′ ∈ Loc in the overall control flow graph G = (Loc, δ, τ) representing the system
under consideration. An assignment α is only admissible if it characterises a
location l ′ such that δ(l , l ′) holds, where l is the location characterised by the
assignment decision at the previous decision level k . Hence, the consideration of
the control flow of the encoded system allows us to narrow down the number of
branches at each level. Moreover, the number of levels gets reduced to b – the
bound of the encoding. Our new algorithm BMCSAT that implements such a
decision level reduction and branch reduction is depicted below.

Algorithm 1: BMCSAT(F , k , l)

Data: CNF formula F , decision level k ∈ N, control flow location l ∈ Loc
Result: assignment α : Atoms(F)→ {0,1} satisfying F , or UNSAT

1 begin
2 α := unit-propagate(F)
3 if α(F) = 1 then
4 return α
5 else if α(F) = 0 then
6 return UNSAT
7 else
8 A := {α′ : LocAtomsk+1 → {0,1} | δ(l , α′)}
9 while A 6= ∅ do

10 choose α′ ∈ A
11 A := A\{α′}
12 if α′′ := BMCSAT((α ◦ α′)(F), k + 1, α′) 6= UNSAT then
13 return α ◦ α′ ◦ α′′

14 return UNSAT

1 The Tseytin CNF transformation introduces a number of auxiliary atoms for each
sub formulae Tk−1,k . The assignment to all k -indexed location atoms by our en-
hanced algorithm and the subsequent application of unit propagation will also im-
mediately assign truth values to the auxiliary atoms. Hence, the presence of auxiliary
atoms does not affect our approach.

9

www.manaraa.com

Beside the formula F and a decision level k ∈ N the recursive algorithm takes
a location l ∈ Loc of the encoded system as input. and eventually returns an
assignment α : Atoms(F) → {0,1} satisfying F or an unsatisfiability result.
The assignment α is constructed incrementally. Hence, until the algorithm has
terminated α may be a partial assignment for F , i.e. its domain may not nec-
essarily contain all atoms of the input formula. The incremental construction
of the overall assignment happens via the concatenation of partial assignments
with disjoint domains: α◦α′. We write α(F) to refer to the formula F under the
assignment α. For instance, the partial assignment α = {(a1,1)} for the formula
¬a1 ∨ a2 yields α(¬a1 ∨ a2) = 0 ∨ a2, which gets simplified to a2.

In Line 2 of the algorithm, unit propagation [18] is applied to the input
formula: If a clause of F is a unit (single-literal) clause it can only be satisfied by
assigning the underlying atom such that the literal is 1. This assignment will be
then propagated to the remaining clauses, the formula will be simplified, and unit
propagation will be repetitively applied as long as there exist further unit clauses
with unassigned atoms. The application of unit propagation yields a (possibly
partial) assignment α. In case α already satisfies F , BMCSAT returns α as a
satisfying assignment and terminates (Line 3). In case α makes the formula 0 the
algorithm terminates with an unsatisfiability result (Line 4). In every other case,
LocAtomsk+1 is identified as the set of atoms that will be assigned at the next
decision level (Line 8). Moreover, the set of possible assignments to LocAtomsk+1

is computed and then restricted to admissible ones by the condition δ(l , α′).
Note that since such assignments α′ always characterise control flow locations
l ∈ Loc, we can also use them as arguments of the transition relation δ of the
underlying control flow graph. In the Lines 9 to 13, BMCSAT is recursively
called resulting in a branch for each admissible assignment. The result of the
calls is then concatenated with the so far partial assignment. SAT solvers do
not generally explore all possible branches. Commonly, one branch is explored
at a time until a satisfiability result can be obtained or until the branch turns
out to be inexpedient. In the latter case conflict-driven clause learning with non-
chronological backtracking [2] is performed and an alternative branch is explored.
An excerpt of the branching tree for BMCSAT(F[0,2], 0, (00, 00)) where F[0,2] is
the 2-bounded encoding of our example verification task is depicted below.

LocAtoms0

LocAtoms1

LocAtoms2

. . .

LocAtoms2

SAT XX

LocAtoms2LocAtoms2

.

(00, 00)

(01, 00) (10, 00)(00, 01) (00, 10)

(01, 10) (00, 11)
(10, 10)

10

www.manaraa.com

The sub formula Init0 of F[0,2] is a conjunction of unit clauses over LocAtoms0 and
VarAtoms0. Hence, the first application of unit propagation will yield an assign-
ment α : LocAtoms0 ∪VarAtoms0 → {0,1} that characterises the initial system
state encoded in Init0. The control flow location l = (00, 00) is part of this ini-
tial state. Subsequently, BMCSAT will identify LocAtoms1 as the set of location
atoms that are assigned next. Based on the transition relation δ of the control
flow graph G = (Loc, δ, τ) the set of admissible assignments (i.e. direct succes-
sor locations of (00, 00) in G) is determined: {(00, 01), (00, 10), (01, 00), (10, 00)}.
For each admissible assignment BMCSAT is recursively called. The branch cor-
responding to the assignment (00, 10) has three further branches at decision level
1. The corresponding assignments are (01, 10), (10, 10) and (00, 11). Choosing
the assignment (01, 10) for LocAtoms2 and the subsequent application of unit
propagation immediately yields a satisfying assignment for F[0,2] and therefore
proves that within two steps an error state is reachable in the encoded system.
Thus, our BMCSAT only requires two decision levels in order to accomplish this
SAT-based verification task, whereas a general-purpose SAT solving algorithm
would require at least |LocAtoms1| + |LocAtoms2| decision levels. The reduc-
tion of decision levels in our branching tree comes at the cost of an increase
of branches at each level. However, our concept of admissible assignments (i.e.
branches) allows us to reduce the number of branches that actually have to be
explored – based on the exploitation of control flow information. In our example
at decision level 0 the admissible assignment concept allows us to reduce the
number of branches to be explored from 16 to only 4, and at level 1 each node
of the search tree now only has 3 instead of 16 branches. The extent to which
branch reduction is generally possible depends on the number of transitions in
the CFG G . In case G is a complete digraph with |Loc|2 transitions (i.e. all
pairs of locations are bi-directionally connected via direct transitions), then our
branch reduction will not have any effect and at each decision level we have to
consider |Loc| branches. However, for most realistic software systems represented

as CFGs the number of transitions is substantially smaller than |Loc|2. For the
verification of such systems the application of branch reduction can enable com-
putational savings of orders of magnitude, which we just exemplified based on
our example. We implemented our enhanced concepts, that we illustrated here
based on BMCSAT, on top of the solver Sat4j. Moreover, we integrated a concept
for heuristic guided error detection into the solver which we introduce next.

5 Directed Model Checking via Heuristic SAT Solving

Directed model checking (DMC) [5] is a concept for guiding the state space explo-
ration via heuristics in order to accelerate the detection of errors. Such heuristics
are typically based on the structure of the system to be checked and the property
of interest. While DMC has been successfully used to improve automata- and
BDD-based model checking [5, 7], this concept has not been transferred yet to
SAT-based bounded model checking. Here we show how the DMC concept can

11

www.manaraa.com

be integrated into our SAT-based bounded model checking approach such that
the performance of SAT solving algorithm profits from heuristic guidance.

Heuristic model checking algorithms exploit useful information to guide the
search. This information is given as an evaluation function h : S → N∞ that
estimates the distance from the current state 〈l , s〉 ∈ S to an error state where
S is the overall set of states. This is known as best-first search. The heuristic
function h is precomputed before the search starts. In [4] a concept for computing
such a h based on the system and the property to be checked is introduced and
it is shown that based on h the exploration of an explicit state space model can
be guided. Here we show that h can be also straightforwardly computed based
on our verification tasks and then used in order to guide the SAT solver.

The evaluation function of [4] combines distances in the control flow and
property-based heuristics. Our system under consideration is given as a compos-
ite CFG G composed of single CFGs Gi = (Loci , δi , τi) for each process. Thus,
we can easily compute a local distance function di : Loci × Loci → N∞ for each
process that returns the shortest directed path in Gi for a pair of its control flow
locations. Now the global distance function is defined as d(l , l ′) :=

∑n
i=1 di(li , l

′
i)

where l , l ′ ∈ Loc and l = (l1, . . . , ln). Remember that in our encoding-based ap-
proach each l can be expressed by an assignment α : LocAtoms → {0,1}. Hence,
we can also use assignments α as arguments of the distance functions, as long
as the assignments characterise actual locations. Since the control flow distance
does not incorporate constraints induced by variable values, the function d gives
us an under-approximation of the length of a shortest path in the actual state
space. From [4] we also get a property-based evaluation function that extends
the distance-based one. Our property is the characterisation of an error state
given as an arbitrary propositional logic expression Errorb over the b-indexed
atoms. For the computation of the evaluation function it is sufficient to consider
the non-indexed equivalent Error . In our running example we had Error :=

(¬l1[1] ∧ l1[2] ∧ ¬q ∧ l2[1] ∧ ¬l2[2] ∧ ¬p) ∨ (l1[1] ∧ ¬l1[2] ∧ ¬p ∧ ¬l2[1] ∧ l2[2] ∧ ¬q)

We now can adapt the property-based evaluation function for our SAT-based
approach as follows. Let Error over Atoms = LocAtoms∪VarAtoms be a formula
characterising an error state. Let F and G be arbitrary sub formulae of Error and
a ∈ VarAtoms. Let enc(li) be a sub formula of Error characterising a location
li ∈ Loci . Then hError : A → NI∞ (where A is a set of assignments characterising
states of the encoded system) is inductively defined as follows:

htrue(α) := 0
hfalse(α) := ∞
ha(α) := if α(a) = 0 then 1 else 0
h¬a(α) := if α(a) = 1 then 1 else 0
hF∨G(α) := min{hF (α), hG(α)}
hF∧G(α) := hF (α) + hG(α)
henc(li)(α) := di(α, li)

12

www.manaraa.com

With our running example we illustrate how h can guide the search of the SAT
solving algorithm BMCSAT in the right direction: We assume that at deci-
sion level 0 the atoms of LocAtoms1 have been assigned by (00, 10) and we
are currently at decision level 1. Hence, the atoms of LocAtoms2 will be as-
signed next. The execution of Line 8 of our algorithm will yield the set A =
{(01, 10), (10, 10), (00, 11)} of admissible assignments. For our heuristically en-
hanced approach, we replace Line 10 of BMCSAT by the following statement:

α′ := select-min(A, hError)

such that the branch resp. assignment α′ ∈ A with the heuristically estimated
shortest distance to an error state is selected for further expansion. For our three
candidates from A we thus get:

hError ((01, 10)) := min{0 + 0, 3 + 3} = 0
hError ((10, 10)) := min{3 + 0, 0 + 3} = 3
hError ((00, 11)) := min{1 + 2, 1 + 2} = 3

Consequently (01, 10) is heuristically chosen as the assignment for LocAtoms2.
At the next level the application of unit propagation will immediately return a
satisfying assignment for the encoding F[0,2] and thus prove that an error state
is reachable within two steps. Our heuristic guidance has thus avoided the ex-
ploration of fruitless branches associated with the other admissible assignments.
Thus we now have two new concepts for tuning SAT solving for model checking:

– the introduction of set assignments and admissible assignments in BMCSAT
shrinks the total number of branches to be explored, and

– the heuristic function h additionally guides the search into fruitful branches

Our heuristic function does not yet incorporate the variable atoms, since all α′ ∈
A only assign values to location atoms. For each a ∈ VarAtoms, α′(a) is unde-
fined, and consequently ha(α′) yields 0. Thus, in our current approach any costs
associated with variable atoms are ignored. A straightforward way to incorporate
those atoms would be to compute the assignment αV ar := unit-propagate((α ◦
α′)(Tk ,k+1)) for each α′ ∈ A, such that αV ar would extend α′ to all vari-
able atoms with index k + 1. In such a manner the costs associated with an
a ∈ VarAtoms would then be estimated by ha(α′ ◦ αV ar).

6 Implementation and Experiments

We have prototypically implemented our SAT-based bounded model checker
with heuristic guidance on top of the solver Sat4j [6]. Our tool builds abstract
CFGs for a given concurrent system Sys and a set of predicates Pred . It supports
almost all control structures of the C language as well as int, bool, semaphore
as data types. Based on the CFGs and an input Error property (e.g. mutual
exclusion violation, deadlock) defined over locations and predicates, our tool au-
tomatically constructs an encoding F of the corresponding verification task. The

13

www.manaraa.com

checker now iterates over the bound b starting with b=0, until a the reachability
of an Error state can be proven or a predefined threshold for b is reached. In
each iteration the encoding is processed by an solver instance of Sat4j. We have
modified the solver such that it implements our proposed concepts of set as-
signments, admissible assignments and property-based heuristic guidance of the
SAT search. For this, the heuristic function that estimates the distance from
the current state to an Error state is precomputed based on the abstract CFGs
and the Error property. In experiments we compared the performance of our
heuristic-guided solver with the performance under the general-purpose solving
of Sat4j. As input systems we used the concurrent Boolean program benchmark
collection of the CProver project2. The programs of the collection implement de-
vice drivers with multiple threads i.e. processes. We checked for the reachability
of states with particular combinations of program locations which we henceforth
denote as error states. The experimental results are summarised below.

benchmark general-purpose heuristic-guided

ib700wdt
reachable 11.3s 2.7s

unreachable 27.6s 39.2s

sc1200wdt
reachable 306s 35.7s

unreachable 124s 143s

i8xx tco
reachable 807s 122s

unreachable 201s 163s

machzwd
reachable 97.0s 31.6s

unreachable 11.3s 10.7s

The experiments were conducted on a 2.6 GHz Intel Core i5 with 8 GB. All
benchmark items consist of a set of concurrent programs. We checked all pro-
grams individually. For some programs of each item the outcome of verification
was the reachability of the error state, whereas for other programs an unreacha-
bility result was obtained. In the table we consider verification tasks with a reach-
ability result and those with an unreachability result separately. The displayed
times denote the average runtime of all reachability resp. all unreachability cases
of each benchmark item. Our experiments revealed that our heuristic approach
significantly enhances the solving performance of verification tasks where the
reachability of an error state can be finally proven, whereas verification tasks
with an unreachability outcome can be typically solved equally efficient with the
general-purpose and the heuristic approach. Hence, our new approach is particu-
larly useful for detecting errors in concurrent systems, while it does not introduce
any drawbacks in case no error can be detected. Our enhanced concepts allow us
to guide the SAT search into directions where errors will be most likely detected.

7 Conclusion

We presented a new approach for accelerating SAT-based model checking. We
defined a propositional logic state space encoding of concurrent systems that
preserves control flow information. Moreover, we designed an enhanced SAT
algorithm that exploits the structure of our encodings in order to reduce the

2 www.cprover.org/boolean-programs

14

www.manaraa.com

computational effort for solving the encoded verification task. The concepts set
assignments and admissible assignments allow to narrow down the number of de-
cision levels and branches to be explored. Furthermore, we introduced a heuristic
based on the property to be verified, which enables to guide the SAT search into
directions where a property violation will be most likely detected. The heuristic
approach facilitates further computational savings. We implemented our state
space encoding and integrated our enhanced SAT concepts into the solver Sat4j.
Our tool allows to perform guided SAT-based BMC with a considerably faster
error detection compared to BMC via general-purpose SAT solving.

References

1. A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, Y. Zhu: Bounded model checking.
In: Handbook of Satisfiability, pp. 457-481 (2009)

2. A. Biere, M. Heule, H. van Maaren, T. Walsh: Conflict-driven clause learning SAT
solvers. In: Handbook of Satisfiability, pp. 131-153 (2009)

3. E. Clarke, D. Kroening, N. Sharygina, and K. Yorav: SATABS: Sat-based predicate
abstraction for ANSI-C. LNCS 3440, 570-574 (2005)

4. S. Edelkamp, A.L. Lafuente, S. Leue: Directed explicit model checking with HSF-
SPIN. LNCS 2057, 57-79 (2001)

5. S. Edelkamp, V. Schuppan, D. Bošnački, A. Wijs, A. Fehnker, H. Aljazzar: Survey
on Directed Model Checking. Springer (2008)

6. D. le Berre, A. Parrain: The Sat4J library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation 7, 59-64 (2010)

7. F. Reffe, S. Edelkamp: Error detection with directed symbolic model checking. In:
Proceedings FM‘99, pp. 195-211 (1999)

8. O. Shtrichman: Tuning sat checkers for bounded model checking. In: Computer
Aided Verification, pp. 480-494. Springer (2000)

9. C. Wang, H. Jin, G.D. Hachtel, F. Somenzi: Refining the SAT decision ordering
for bounded model checking. In: DAC, pp. 535-538. ACM (2004)

10. E. Zarpas: Benchmarking SAT solvers for bounded model checking. In: Theory
and Applications of Satisfiability Testing, pp. 340-354. Springer (2005)

11. B. Demsky, P. Lam: SATCheck: SAT-directed stateless model checking for SC and
TSO. In: ACM SIGPLAN Notices, pp. 20-36. ACM (2015)

12. G. Audemard, L. Simon: Predicting Learnt Clauses Quality in Modern SAT
Solvers. In: IJCAI, pp. 399-404. (2009)

13. A.S. Andisha, M. Wehrle, B. Westphal: Directed Model Checking for PROMELA
with Relaxation-Based Distance Functions. In: SPIN, pp. 153-159. Springer (2015)

14. J. Maeoka, Y. Tanabe, F. Ishikawa: Depth-First Heuristic Search for Software
Model Checking. In: Comp. and Inf. Science, pp. 75-96. Springer (2016)

15. J. Schrieb, H. Wehrheim, D. Wonisch: Three-valued spotlight abstractions. In:
International Symposium on Formal Methods, pp. 106-122. Springer (2009)

16. G.S. Tseytin: On the complexity of derivation in propositional calculus. In: Stud-
ies in Constructive Mathematics and Mathematical Logic, pp. 115-125. Steklov
Mathematical Institute (1970)

17. A. Van Gelder: Improved conflict-clause minimization leads to improved proposi-
tional proof traces. In: SAT 2009, pp. 141-146. Springer (2009)

18. H. Zhang, M. Stickel: An efficient algorithm for unit-propagation. In: 4th Int.
Symposium on Artificial Intelligence and Mathematics, pp. 166-169. (1996)

15

www.manaraa.com

A Formal Model for Multi SPLs?

Ferruccio Damiani, Michael Lienhardt, and Luca Paolini

University of Torino, Italy
{ferruccio.damiani, michael.lienhardt, luca.paolini}@unito.it

Abstract. A Software Product Line (SPL) is a family of similar pro-
grams generated from a common artifact base. A Multi SPL (MPL)
is a set of interdependent SPLs that are typically managed and devel-
oped in a decentralized fashion. Delta-Oriented Programming (DOP) is
a flexible and modular approach to implement SPLs. This paper presents
new concepts that extend DOP to support the implementation of MPLs.
These extensions aim to accommodate compositional analyses. They are
presented by means of a core calculus for delta-oriented MPLs of Java
programs. Suitability for MPL compositional analyses is demonstrated
by compositional reuse of existing SPL analysis techniques.

1 Introduction

Highly-configurable software systems can be described as Software Product Lines
(SPLs). An SPL is a family of similar programs, called variants, that have a well-
documented variability and are generated from a common artifact base [7,19,2].
An SPL consists of: (i) a feature model defining the set of variants in terms of
features (each feature represents an abstract description of functionality and each
variant is identified by a set of features, called a product); (ii) an artifact base
providing language dependent reusable code artifacts that are used to build the
variants; and (iii) configuration knowledge which connects feature model and
artifact base by defining how to derive variants from the code artifacts given
the products (thus inducing a mapping from products to variants, called the
generator of the SPL).

Delta-Oriented Programming (DOP) [21], [2, Sect. 6.6.1] is a flexible and
modular approach to implement SPLs. The artifact base of a delta-oriented SPL
consists of a base program (that might be empty) and of a set of delta mod-
ules (deltas for short), which are containers of modifications to a program (e.g.,
for Java programs, a delta can add, remove or modify classes and interfaces).
The configuration knowledge of a delta-oriented SPL defines the generator by
associating to each delta an activation condition over the features (i.e., a set
of products) and specifying an application ordering between deltas. DOP sup-
ports the automatic generation of variants based on a selection of features: once

? This work has been partially supported by: EU Horizon 2020 project Hy-
Var (www.hyvar-project.eu), GA No. 644298; ICT COST Action IC1402
ARVI (www.cost-arvi.eu); and Ateneo/CSP D16D15000360005 project RunVar
(runvar-project.di.unito.it).

16

www.manaraa.com

a user selects a product, the corresponding variant is derived by applying the
deltas with a satisfied activation condition to the base program according to
the application ordering. Moreover, DOP is a generalization of Feature-Oriented
Programming (FOP) [4], [2, Sect. 6.1], a previously proposed approach to imple-
ment SPLs where deltas correspond one-to-one to features and do not contain
remove operations.

Modern software systems often out-grow the scale of SPLs by involving the
notion of Multi SPLs (MPLs), i.e., sets of interdependent SPLs that need to
be managed in a decentralized fashion by multiple teams and stakeholders [13].
There are two main motivations to build such MPLs: either to structure a com-
plex SPL into more manageable modules, or to reuse existing SPLs into a bigger
project. In this paper we give, to the best of our knowledge, the first formal
model of MPLs that spans feature model, artifact base and configuration knowl-
edge. Our model is constructed around the concepts of SPL signature, Dependent
SPL and SPL composition. It builds on recent work done by Schröter et al. [24]
on compositional analysis of feature models, and on the delta-oriented program-
ming core calculus IF∆J by Bettini et al. [5], which is extended here to enable
the construction of MPLs. The main achievement of our model is the ability to
modularly compose and analyze SPLs by means of Dependent SPLs, which are
SPLs with explicit dependencies, modeled by SPL signatures, that can be filled
by SPLs (or Dependent SPLs) satisfying the given signatures.

Section 2 provides some background. Section 3 formalizes the main concepts
proposed in the paper by introducing the Imperative Featherweight Multi
Delta Java (IFM∆J) calculus, which extends IF∆J to implement MPLs. Sec-
tion 4 illustrates how the concepts of SPL signature, dependent SPL, and SPL
composition support compositionality of existing SPL analysis, like feature model
analysis or type checking. Section 5 discusses related work.

2 Background and Running Example

2.1 IF∆J: a Formal Foundation for Delta-Oriented SPLs

IF∆J [5] is a core calculus for delta-oriented SPLs where variants are written in
IFJ (an imperative version of FJ [14]). The abstract syntax of IFJ is given in
Figure 1 (explanations are given in the caption)—following [14], we use the over-
line notation for (possibly empty) sequences of elements: for instance e stands
for a sequence of expressions. The empty sequence is denoted by ∅. Type system,
operational semantics, and type soundness for IFJ are given in [5].

The abstract syntax of IF∆J SPLs is given in Figure 2 (explanations are
given in the caption). The deltas in the artifact base must have distinct names,
the class operations in a delta must act on distinct classes, and the attribute
operations in a class operation must act on distinct attributes. In IF∆J there is
no concrete syntax for the feature model and the configuration knowledge. As
usual, to simplify the formalization, we represent feature modelsM as pairs (set
of features, set of products) and configuration knowledges K as pairs (mapping
from deltas to activation conditions, delta application ordering).

17

www.manaraa.com

P ::= CD Program

CD ::= class C extends C { AD } Class Declaration
AD ::= FD | MD Attribute (Field or Method) Declaration
FD ::= C f Field Declaration
MH ::= C m(C x) Method Header
MD ::= MH {return e; } Method Declaration
e ::= x | e.f | e.m(e) | new C() | (C)e | e.f = e | null Expression

Fig. 1. Syntax of IFJ. A program P is a sequence of class declarations CD. A class
declaration comprises the name C of the class, the name of the superclass (which must
always be specified, even if it is the built-in class Object), and a list of attribute (field
or method) declarations AD. Variables x include the special variable this (implic-
itly bound in any method declaration MD), which may not be used as the name of a
method’s formal parameter. All fields and methods are public, there is no field shad-
owing, there is no method overloading, and each class is assumed to have an implicit
constructor that initialized all fields to null. The subtyping relation <: on classes, which
is the reflexive and transitive closure of the immediate subclass relation (given by the
extends clauses in class declarations), is supposed to be acyclic.

LD ::= line L {M K AB} SPL Delaration

AB ::= P DD Artifact Base

DD ::= delta d { CO } Delta Declaration

CO ::= adds CD | removes C | modifies C [extends C′] { AO } Class Operation
AO ::= adds AD | removes a | modifies MD Attribute Operation

Fig. 2. Syntax of IF∆J SPLs. An SPL declaration comprises the name L of the
product line, a feature modelM, configuration knowledge K, and an artifact base AB.
The artifact base comprises a (possibly empty) IFJ program P, and a set of deltas
DD. A delta declaration DD comprises the name d of the delta and class operations
CO representing the transformations performed when the delta is applied to an IFJ
program. A class operation can add, remove, or modify a class. A class can be modified
by (possibly) changing its super class and performing attribute operations AO on its
body. An attribute name a is either a field name f or a method name m. An attribute
operation can add or remove fields and methods, and modify the implementation of a
method by replacing its body. The new body may call the special method original,
which is implicitly bound to the previous implementation of the method and may not
be used as the name of a method.

Definition 1 (Feature model). A feature modelMx is a pair (Fx,Px) where
Fx is a set of features and Px ⊆ 2Fx is a set of products. M∅ = (∅, ∅) is the
empty feature model.

Definition 2 (Configuration knowledge). A configuration knowledge Kx is
a pair (αx, <x) where αx is a map that associates to each delta declaration the
set of products that activate it (the activation condition), and <x is an ordering
between deltas (the application ordering).

These representations simplify stating and proving results independently from
implementation details. However, they do not scale well in actual implementa-
tions. In the examples, we represent feature models also as feature diagrams
(which are diagrams that illustrate feature dependencies by organizing features

18

www.manaraa.com

in a tree structure with cross tree-constraints) or as propositional formulas Φ
where variables are feature names f (see, e.g., [3] for a discussion on other pos-
sible representations):

Φ ::= true | f | Φ⇒ Φ | ¬Φ | Φ ∧ Φ | Φ ∨ Φ

To avoid over-specification, the ordering <x may be partial. We assume un-
ambiguity of the SPL, i.e., for each product, any total ordering of the acti-
vated deltas that respects <x generates the same variant (see [18,5] for effective
means to ensure unambiguity). In examples, we represent activation conditions
as propositional formulas (see above) and application orderings as total orderings
on a partition of the set of delta names.

Feature model, configuration knowledge and artifact base of an SPL named
L are denoted by ML = (FL,PL), KL = (αL, <L) and ABL, respectively. In order
to define the generator GL of an SPL L, we first introduce the auxiliary notions of
delta applicability and delta application. A delta d is applicable to a program P iff
each class to be added does not exist; each class to be removed or modified exists;
and (for every class-modify operation): each method or field to be added does
not exist; each method or field to be removed exists; each method to be modified
exists and has the same header specified in the method-modify operation. If d
is applicable to P, then the application of d to P is the program, denoted by
d(P), obtained from P by applying all the operations in d—otherwise d(P) is
undefined.

Definition 3 (Generator of an SPL [5]). The generator of L, denoted by
GL, is the mapping that associates each product p of L to the IFJ program dn(· · ·
d1(P) · · ·), where P is the base program of L and d1 . . . , dn (n ≥ 0) are the deltas
of L activated by p, listed according to the application order.

The generator GL may be partial since, for some product of L, a delta DDi (1 ≤
i ≤ n) may not be applicable to the intermediate variant DDi−1(· · · DD1(P) · · ·)
thus making GL undefined for that product.

The running example of this paper is based on bank accounts. Figure 3
illustrates an SPL of capital accounts (CapitalAccount, on the left) and an SPL
of financial accounts (FinancialAccount, on the right)—explanations are given in
the caption. To make the example more readable, in the artifact bases we use
Java syntax for field initialization, primitive data types, strings and sequential
composition—encoding in IF∆J syntax is straightforward (see [5]).

Remark 1 (Base program and empty product). In order to simplify the presen-
tation, the formal definitions in the rest of this document assume that: (i) the
base program is always the empty program; (ii) no delta d is activated by the
empty product (i.e., ∅ 6∈ αL(d) for all d); and (iii) GL(∅) = ∅, even when ∅ is not
a product. Note that these assumptions are not restrictive. In particular, the
base program of any SPL L can be always encoded as an extra delta (the base
delta) with distinguished name dL such that αL(dL) = PL and dL is the minimum
according to <L.

19

www.manaraa.com

FCapitalAccount = { C B I Y O }
PCapitalAccount = { { C B I },

{ C B Y },
{ C B I O } }

CapitalAccount

BalanceInfo InterestRate YearlyFees Overdraft

implies

FFinancialAccount = { F A P W }
PFinancialAccount = { { F A P },

{ F A W },
{ F A P W } }

FinancialAccount

AmountInfo Portfolio Welfare
Mandatory Alternative

Optional Or

<CapitalAccount : {dInterest, dFixFees} < {dOverdraft}
αCapitalAccount : dInterest 7→ I, dFixFees 7→ Y, dOverdraft 7→ O

<FinancialAccount : {dPortfolio, dWelfare}
αFinancialAccount : dPortfolio 7→ P, dWelfare 7→ W

class CapAccount extends Object { // Base Program
String identity; double balance=0.0;
MyDate lastUpdate=MyDate.today();
void withdraw(double x){if(x>0) balance−=x;}
} // Deltas
delta dInterest {

modifies class CapAccount{
adds double yearRate=0.05; adds double opFees=1;
adds void interestUpdate(double rate){

double range=lastUpdate.daysSince()/365;
lastUpdate=MyDate.today();
balance+= balance∗rate∗range;}

modifies void withdraw(double x){
interestUpdate(yearRate); original(x+opFees); }}}

delta dFixFees {
modifies class CapAccount {
adds double yearFees=10.0;
adds MyDate yearPaid=MyDate.currentYear();
adds void withdraw(double x){
balance−=yearFees∗(yearPaid.yearsSince());
yearPaid=MyDate.currentYear(); original(x);}}}

class FinAccount extends Object { // Base program
String identity; double liquidity=0.0;
} // Deltas
delta dPortfolio {

adds class RiskProd extends Object {
String info; int quantity;
RiskProd init(String i, int q)
{info=i; quantity=q; return this;}}

modifies class FinAccount {
adds LinkedList portfolio=new LinkedList();
adds void addToPortfolio(String i, int q){

portfolio.add(new RiskProd().init(i,q));}}}
delta dWelfare {

adds class LifeProd extends Object {
String info; String beneficiary;
LifeProd init(String i, String b)
{info=i; beneficiary=b; return this;}}

modifies class FinAccount {
adds ArrayList welfare=new ArrayList();
adds void addToWelfare(String i, String b){

portfolio.add(new LifeProd().init(i,b));}}}
delta dOverdraft{

modifies class CapAccount { adds double maxOver=100.0, negativeRate=0.10;
adds void negUpdate(){ if(balance<0){interestUpdate(−negativeRate);}}
modifies void withdraw(double x){ negUpdate(); if(x<balance+maxOver−opFees) original(x);}}}

Fig. 3. Left: CapitalAccount SPL: feature model MCapitalAccount (top), configuration
knowledge KCapitalAccount (middle), and artifact base ABCapitalAccount (bottom). This SPL
provides a class CapAccount for money managing bank accounts. The mandatory fea-
ture BalanceInfo provides some basic fields (identity, balance and lastUpdate) and
a method withdraw (method deposit, which is similar, is omitted). InterestRate and
YearlyFees provide two alternative bank-policies: one and only one of them, must be
selected. The former manages accrued interests and operation-fees (applied to each
withdraw), the second manages fixed fees per year (and no bank interests). The op-
tional feaure Overdraft, which allows to withdraw more money than that available, re-
quires feaure InterestRate in order to apply a negative interest. Right: FinancialAccount
SPL: MFinancialAccount (top), KFinancialAccount (middle), and ABFinancialAccount (bottom). This
SPL provides a class FinAccount for investment product managing bank accounts. The
mandatory feature AmountInfo provides basic fields (identity, liquidity). It must be
flanked by at least one feature between Portfolio and Welfare. The latter provides a list
of welfare products. The former provides a list of financial products.

2.2 Feature Model Composition and Feature Model Interfaces

Recently, Schröter et al. [24] considered a notion of feature model composition
through aggregation (i.e., by inclusion of one feature model into another feature
model [20]) and proposed to use it in combination with a notion of feature model
interface in order to support compositional analyses of feature models.

Definition 4 (Feature model composition [24]). LetMx = (Fx,Px),My =
(Fy,Py), and MGlue = (FGlue,PGlue) be feature models that satisfy the glue-

20

www.manaraa.com

proviso FGlue ⊆ Fx∪Fy. The composition of Mx and My is the feature model,
denoted as Mx/y, defined as follows by using composition operation ◦, the aux-
iliary join operation •, and the auxiliary operation R:

Mx/y = ◦(Mx,My,MGlue) =Mx◦MGlue
My = (Mx•R(My))•MGlue

R(My) = (Fy,Py ∪ {∅})
Mx•My = (Fx ∪ Fy, {p ∪ q | p ∈ Px, q ∈ Py, p ∩ Fy = q ∩ Fx})

Operation R takes one feature model My as input and converts it to a new
feature model in which the empty product is a valid product (thus Py core
features are not necessarily core in the composed feature model). Operation • is
similar to a cross product from relational algebra and creates all combinations
between both product sets.

The feature model MGlue describes a parent-child relationship and other
constraints between Mx and My in order to connect them.

Definition 5 (Feature model interface [24]). A feature modelMInt = (FInt,
PInt) is an interface of feature model Mx = (Fx,Px), denoted as MInt � Mx,
iff FInt ⊆ Fx and PInt = {p ∩ FInt | p ∈ Px}.

Remark 2 (Feature disjointness). As pointed out in [24, Sect. 4.1, second to last
paragraph] the compositional results about ◦ “are based on the assumption that
Fx and Fy do not share features (i.e. Fx∩Fy = ∅)”. In the rest of this document,
the use of ◦ always relies on this feature disjointedness assumption.

3 IFM∆J: a Core Calculus for MPLs

The example presented in Figure 3 introduces two SPLs, CapitalAccount and
FinancialAccount, describing two kinds of bank accounts: it would make perfect
sense to combine these two SPLs in order to obtain an SPL describing a bank
account with functionalities described in both SPLs.

In a first approach, one could define a new SPL DualAccount that uses (i.e.,
depends on) the two bank account SPLs presented in Figure 3 to define a new
class that implements the different features defined in the two SPLs. We call
an SPL with such dependencies a Dependent SPL.However, such an approach is
not satisfactory as it couples too strongly DualAccount to its SPLs: DualAccount
is set to use the CapitalAccount and FinancialAccount SPLs and cannot change
even if a more efficient implementation of these SPLs comes up. To deal with
this issue, we introduce the notion of SPL signature which is used to specify the
APIs on which a Dependent SPL depends; then any SPL that implements such
signature can fulfill the dependencies of a Dependent SPL.

DualAccount

CapAccInt

CapitalAccount ...

FinAccInt

FinancialAccount ...

Hence, our approach to
define the DualAccount De-
pendent SPL follows the struc-
ture presented on the right:
DualAccount depends on two

21

www.manaraa.com

PS ::= CS Program Signature

CS ::= class C extends C { AS } Class Signature
AS ::= FD | MH Attribute (Field or Method) Signature

LS ::= sig Z {M K ABS} SPL Signature Declaration

ABS ::= PS DS AB Signature

DS ::= delta d { COS } Delta Signature

COS ::= adds CS | removes C | modifies C [extends C′] { AOS } CO Signature
AOS ::= adds AS | removes a AO Signature

LD ::= line L (Z) {M
Main

MGlue K AB} Dependent SPL Delaration

Fig. 4. Syntax of IFM∆J. Program signatures (top). SPL signature declarations
(middle). Dependent SPL declarations (bottom)—the extensions with respect to IF∆J
SPLs (given in Figure 2, with the syntax of artifact bases AB) are highlighted in grey.

SPL signatures: CapAccInt specifies the API requested by DualAccount for the
capital account backend implementation, while FinAccInt specifies the API re-
quested by DualAccount for the financial account implementation. Then these
two signatures are implemented by CapitalAccount and FinancialAccount respec-
tively, and possibly other SPLs.

We structure the presentation of our model as follows: first we introduce the
concept of SPL signature (SPLS) and formally define when an SPL implements
an SPL signature; second we define the notion of Dependent SPL (DPL) as we
just presented; and finally, we demonstrate how to generate the variants of a
DPL.

3.1 SPL Signatures

An SPL signature (SPLS) describes the API of an SPL and is structured like
an SPL with a feature model, configuration knowledge, and an artifact base. Its
difference with an SPL lies in the fact that its artifact base does not include the
implementation of methods. Figure 4 (middle) gives the abstract syntax of SPLSs
which uses program signatures, presented in Figure 4 (top), to construct their
artifact bases. A program signature is a program deprived of method bodies. An
SPLS declaration LS comprises the name Z of the SPLS, a feature model M,
configuration knowledge K and an artifact base signature ABS which, in turn,
comprises a program signature PS and a set of delta signatures DS—a delta
signature DS is a delta deprived of method-modifies operations and method
bodies.

An SPL L implements an SPLS Z when all the declarations in Z are im-
plemented in L. I.e., when all the products of Z can be extended in a product
of L and for each variant of Z, all of its declared elements are implemented in
the corresponding variant of L. We first define the generator of an SPLS (in
order to define what are its variants and their declaration), and then present the
definition of the interface relation, defining when an SPL implements an SPLS.

22

www.manaraa.com

FCapAccInt = { C I O }
PCapAccInt = { { C I },

{ C } }
{ C I O } }

CapitalAccount

InterestRate Overdraftimplies

FFinAccInt = { F P W }
PFinAccInt = { { F P },

{ { F W },
{ F P W } }

FinancialAccount

Portfolio Welfare

<CapAccInt : {dInterest, dOverdraft}
αCapAccInt : dInterest 7→ I, dOverdraft 7→ O

<FinAccInt : {dSigPortfolio, dSigWelfare}
αFinAccInt : dSigPortfolio 7→ P, dSigWelfare 7→ W

class CapAccount extends Object { // Base Program
String identity;
double balance;
Date lastUpdate;
void withdraw(double x);
} // Deltas
delta dInterest{

modifies class CapAccount {
adds double yearRate;
adds double opFees;
adds void interestUpdate(double rate);}}

delta dOverdraft{
modifies class CapAccount {

adds double maxOver, negativeRate;
adds void negUpdate(); }}

class FinAccount extends Object { // Base program
String identity; double liquidity;
} // Deltas
delta dSigPortfolio{

adds class RiskProd extends Object {
String info; int quantity;
RiskProd init(String i, int q);}

modifies class FinAccount {
adds LinkedList portfolio;
adds void addToPortfolio(String i, int q);}}

delta dSigWelfare {
adds class LifeProd extends Object {

String info; String beneficiary;
LifeProd init(String i, String b);}

modifies class FinAccount {
adds LinkedList welfare;
adds addToWelfare(String i, String b); }}

Fig. 5. Left: CapAccInt SPLS: MCapAccInt (top), KCapAccInt (middle), and ABSCapAccInt

(bottom). This SPLS is an interface of the CapitalAccount SPL if Figure 3 (left). It hides
features BalanceInfo and YearlyFees. Right: FinAccInt SPLS: MFinAccInt (top), KFinAccInt

(middle), and ABFinAccInt (bottom). This SPLS is an interface of the FinancialAccount
SPL of Figure 3 (right). It hides feature AmountInfo.

Definition 6 (Generator of an SPLS). The generator of an SPLS Z, denoted
by GZ, is a mapping from products to program signatures defined similarly to the
generator of an SPL (see Definition 3).

Definition 7 (Program interface). A program signature PSInt is an interface
of program P, denoted as PSInt � P, iff PSInt is obtained from P by dropping
some class or attributes, the body of the remaining methods and by replacing
some extends C clause by extends C′ where C′ is a superclass of C.

Definition 8 (SPL interface). An SPLS ZInt is an interface of an SPL L,
denoted as ZInt � L, iff: (i) MZInt � ML; and (ii) the generators GZInt and GL
are total and for each p ∈ PL, GZInt(p ∩ FZInt) � GL(p).

We say that an SPL L implements an SPLS Z when Z is an interface of L.
Figure 5 represents an interface of SPL CapitalAccount (CapAccInt, on the

left) and an interface of SPL FinancialAccount (FinAccInt, on the right), expla-
nations are given in the caption.

3.2 Dependent SPLs

A Dependent SPL (DPL) is an SPL extended with dependencies modeled by
SPLSs. The abstract syntax of IFM∆J DPLs is given in Figure 4 (bottom). A
DPL declaration comprises the name L of the DPL, a sequence of SPLS names
Z = Z1, . . . , Zn specifying its dependencies, a pair of feature models MMain and

23

www.manaraa.com

MGlue, configuration knowledge K and an artifact base AB. The two feature
models MMain and MGlue structure the actual feature model ML of L in two
parts:MMain describes the part ofML that is local to L, whileMGlue states how
the features ofML are related with the features of L’s dependencies. Formally, the
feature model of L is defined as a composition ofMMain and the feature models
MZ1 , . . . ,MZn , glued together withMGlue:ML =MMain/Z =MMain◦MGlue

MZ

whereMZ = R(MZ1) • · · · • R(MZn). Lemma 1 below guarantees that the order
of Z1,. . . ,Zn is immaterial.

Lemma 1 (Join operation). The join operation • is associative and commu-
tative, with MId = R(M∅) = R((∅, ∅)) = (∅, {∅}) as identity.

Figure 6 presents the DPL DualAccount with dependencies CapAccInt and
FinAccInt—explanations are given in the caption.

Remark 3 (DPL conservatively extends SPL). In order to ensure that the con-
cept of DPL is a conservative extension of the concept of SPL (cf. Section 2.1),
we assume that if a DPL L has no dependencies (i.e., Z = ∅) thenMGlue =MId

(cf. Lemma 1). Therefore: (i) any DPL L without dependencies can be seen as
an SPL with feature model ML =MMain; and (ii) any SPL L can be seen as a
DPL with MMain =ML and MGlue =MId .

Definition 9 (Multi Software Product Lines). A Multi Software Product
Line (MPL) is a set of SPL Signatures and Dependent SPLs.

Sanity Conditions. To simplify the manipulation of our model in the rest of
the document, we give here a set of standard sanity conditions that are supposed
to be satisfied by the MPLs that we consider in this paper. First, we suppose
that all the DPL and SPLS names used in an MPL are declared exactly once
in the MPL. Second, we suppose that a DPL depends only once on an SPLS,
i.e., the list of dependencies (Z) in the DPL syntax does not contain duplicates.
Finally, we suppose that a class can only be declared and modified by at most
one DPL in an MPL. Note that class disjointness enforces a boundary between
different DPLs and rules out class name clashes between variants of different
DPLs. Moreover, without loss of generality, we assume that the scope of the
name of a delta is limited to the DPL or SPLS that contain its declaration (i.e.,
each delta name may belong to a unique DPL or SPLS).

3.3 DPLs Composition

The concept of DPL-SPLs composition formalizes composition of software prod-
uct lines through aggregation by means of the concepts of DPL and SPL interface
(i.e., by inclusion of some SPLs into a DPL to fulfill its dependencies)—thus ex-
tending the concept of feature model composition to encompass the configuration
knowledge and the artifact base.

24

www.manaraa.com

CapAccount dependency FinAccount dependency

FMainDualAccount = { D L}.
PMainDualAccount = { { D

{ { D L}, }

FGlueDualAccount = { D C I F P L }.
PGlueDualAccount = { { D C I },

{ { D C I L },
{ { D F P },
{ { D F P L },
{ { D C I F P L } }

FDualAccount = { D C I O F P W L }.
PDualAccount = { { D C I },

{ { D C I O },
{ { D C I L },
{ { D C I O L },
{ { D F P },
{ { D F P W },
{ { D F P L },
{ { D F P W L },
{ { D C I F P L },
{ { D C I O F P L },
{ { D C I F P W L },
{ { D C I O F P W L } }

Cross-tree constraints:

CapitalAccount ∧ FinancialAccount→ LogBook

DualAccount

CapitalAccount FinancialAccount LogBook

InterestRate Overdraft Portfolio Welfare

<DualAccount : {dDualCapital, dDualFinancial, dDualWelfare}
αDualAccount : dDualCapital 7→ (C∧L), dDualPortfolio 7→ (P∧L), dDualWelfare 7→ (W∧L)

class DualAccount extends Object { // Base program
String identity; String journalLog; DualAccount(String id){identity=id}; }

delta dDualCapital { // Deltas
modifies class CapAccount extends Object { removes String identity; }
modifies class DualAccount extends Object { adds CapAccount cap;

adds void withdraw(double x){ journalLog+= ”::withdraw(”+x+”)”; cap.withdraw(x); }}}
delta dDualFinancial {

modifies class FinAccount extends Object { removes String identity; }
modifies class DualAccount extends Object { adds FinAccount fin;

adds void addToPortfolio(String i, Date e){
journalLog+= ”::addToPortfolio(”+i+”,”+e.toString()+”)”; fin.portfolio.addToPortfolio(i,e); }}}

delta dDualWelfare {
modifies class DualAccount extends Object { adds FinAccount wel;

adds void addToWelfare(String i, String b){
journalLog+= ”::addToWelfare(”+i+”,”+b+”)”; wel.welfare.addWelfare(i,b); }}}

Fig. 6. DualAccount DPL is declared as:
line DualAccount(CapAccInt,FinAccInt) {MMainDualAccountMGlueDualAccountKDualAccountABDualAccount}.
It has feature model MDualAccount = MMainDualAccount/CapAccInt,FinAccInt =
MMainDualAccount◦MGlueDualAccount

MCapAccInt,FinAccInt (depicted as a feature diagram at
the top of the figure); configuration knowledge KDualAccount (middle); and artifact
base ABDualAccount (bottom). It provides a class DualAccount that combines two bank
accounts that satisfy the dependencies CapAccInt and FinAccInt (given in Figure
5), respectively. The feature model MDualAccount is the composition of four feature
models. (i) The feature model MMainDualAccount , which comprises the mandatory feature
DualAccount and the optional feature LogBook (that ensures that transactions are
traced). (ii)-(iii) The feature models of the dependencies CapAccInt and FinAccInt
(given in Figure 5). (iv) The feature model MGlueDualAccount , which has features DualAc-
count, LogBook, CapitalAccount,FinancialAccount, InterestRate, Portfolio and expresses
the constraints FinancialAccount ∧ CapitalAccount, CapitalAccount → InterestRate
FinancialAccount → Portfolio (represented by the parts colored in red of the feature
diagram) and CapitalAccount ∧ FinancialAccount → LogBook (represented by the
cross-tree constraint, also colored in red). The dashed rectangles depict the feature
diagrams representing the feature model obtained from MCapAccInt and MFinAccInt by
adding the constraints provided by the feature model MGlueDualAccount , respectively.

Definition 10 (DPL-SPLs composition). Let L be a DPL with dependencies
Z = Z1, ..., Zn (n ≥ 0) and L = L1, ..., Ln be SPLs such that Zi � Li (1 ≤ i ≤ n).
The composition of L with L is the SPL (cf. Remark 3) L0 = L(L) such that:1

1 Because of the delta scope assumption, in the definition of KL0 the union of the
application ordering relations (which denotes the relation obtained by union of their
graphs) is well defined.

25

www.manaraa.com

– MMainL0
=MMainL/L

=MMainL
◦MGlueL

ML ;

– KL0 = (αL0 , <L0) = (α′L ∪
(⋃

i∈{1,...,n} α
′
Li

)
), <L ∪

(⋃
i∈{1,...,n}<Li

)
) where

− α′L(d) = {p ∈ PL0 | p ∩ FL ∈ αL(d)} for all deltas d of L;
− α′Li(d) = {p ∈ PL0 | p ∩ FLi ∈ αLi(d)} for all deltas d of Li;

– ABL0 = ABL ∪
(⋃

i∈{1,...,n}ABLi

)
; and

– MGlueL0
=MId .

Note that, if L has no dependencies (i.e., n = 0), then GL(L) = GL(∅) = GL (so,

L(L) and L have the same variants). For example, the DPL DualAccount can be
composed with the SPLs CapitalAccount and FinancialAccount to obtain the SPL
DualAccount(CapitalAccount,FinancialAccount).

The following theorems shed light on DPL-SPLs composition. Theorem 1
states that the variants of the composed SPL L(L) can be generated by building
the composed feature model ML(L) and then using the generators of the DPL

L and of the SPLs L—thus, there is no need to actually build the whole L(L).
Theorem 2 states that fulfilling the dependencies of a DPL preserves the set of
implemented interfaces.

Theorem 1 (Generator of the composed product line). Let L0 = L(L).
For each product p ∈ PL0 , GL0(p) = GL(p ∩ FL) ∪

(⋃
Li∈L GLi(p ∩ FLi)

)
.

Theorem 2 (DPL-SPLs composition preserves interfacing). Let Z be an
SPLS, L be a DPL with dependencies Z = Z1, ..., Zn (n ≥ 0), and L = L1, ..., Ln
be SPLs. If Z � L and Zi � Li (1 ≤ i ≤ n), then Z � L(L).

In the following, we show that composition can also be done between DPLs:
we just need to define the interface relation on DPLs and then extend the DPL-
SPLs composition to DPL-DPL as well.

Definition 11 (DPL interface). An SPLS ZInt is an interface of an DPL
L with dependencies Z, denoted as ZInt � L, iff (i) MZInt � ML; and (ii) the
generators GZInt , GL and GZ are total and for each p ∈ PL, GZInt(p ∩ FZInt) �⋃G?Z (p ∩ FZ) ∪ GL(p), where G?Z (p ∩ FZ) is equal to GZ(p ∩ FZ) with all method
declarations extended with the body {return null;}.

The following definition extends the concept of DPL-SPLs composition (Def-
inition 10) by accepting DPLs as arguments and yielding a DPL as result.

Definition 12 (DPL-DPLs composition). Let L be a DPL with dependencies
Z = Z1, ..., Zn (n ≥ 0) and L = L1, ..., Ln be DPLs such that Zi � Li (1 ≤ i ≤ n).

Let Z
(i)

= Zi,1, ..., Zi,ni (ni ≥ 0) be the dependencies of Li (1 ≤ i ≤ n). The

composition of L with L is the DPL L0 = L(L), with dependencies Z
(1)
, ..., Z

(n)
,

such that MMainL0
, KL0 and ABL0 are defined as in Definition 10, and MGlueL0

is defined by MGlueL0
=MGlueL1

• · · · •MGlueLn
.

Note that, if the DPLs Li (1 ≤ i ≤ n) have no dependencies (i.e., Z
(i)

= ∅ and
MGlueLi

= MId), then MGlueL0
= MId (like in Definition 10). Thus Defini-

tion 12 conservatively extends Definition 10. Moreover, Theorem 1 also holds
when L and L0 = L(L) are DPLs, and Theorem 2 can be extended as follows:

26

www.manaraa.com

Theorem 3 (DPL-DPLs composition preserves interfacing). Let Z be an
SPLS, L be a DPL with dependencies Z = Z1, ..., Zn (n ≥ 0), and L = L1, ..., Ln
be DPLs. If Z � L and Zi � Li (1 ≤ i ≤ n), then Z � L(L).

4 Compositionality of Existing SPL Analyses

In this section, we give two initial results illustrating the fact that our MPL
model is well-suited for compositional analysis. First, we show that the results
about the compositionality of existing analyses of feature models (void feature
model, core features, dead features, void partial configuration, and atomic sets)
given in [24, Sect. 5] can be used as-is in our model. Second, we show how to
extend existing type systems for SPLs to ensure well-typedness in our model.

Compositional Analysis of Feature Models. The following theorem shows
that the construction of the feature model of a DPL can be expressed as a
sequence of ◦ operations. This, plus the fact that an SPLS Z is an interface
of a DPL L only when MZ � ML ensures that the results presented in [24,
Sect. 5] can be used as-is to analyse the feature models constructed in DPL-
DPL compositions by analysing each feature model independently.

Theorem 4. Let Mx = (Fx,Px), My1
= (Fy1

,Py1
),. . . ,Myn = (Fyn ,Pyn),

with n ≥ 1, be feature models with pairwise feature disjointness (cf. Remark 2)
and My = R(My1

)• · · · •R(Myn). Then (for every permutation w1, ..., wn of
y1, ..., yn):Mx/y =Mx◦MGlue

My = ((Mx◦MId
Mw1

)···◦MId
Mwn−1

)◦MGlue
Mwn .

Compositional Type System for MPLs. Type checking an SPL means
to check that all its variants can be generated and are well-typed programs.
Performing this check by generating each variant and type checking it does not
scale (a product line with n features can have up to 2n products). Therefore,
several SPL type checking approaches have been proposed in the literature [27].
Three type checking approaches for delta-oriented SPLs have been proposed and
formalized [9,5,8] by means of the IF∆J calculus.

In our MPL model, we add two structures that can be type-checked: DPLs
and DPL-DPL compositions. However, due to the fact that the artifact base of a
DPL depends on code defined in other DPLs, it is too restrictive to require that
its variants are well-typed programs: they can indeed contain missing dependen-
cies. The following definition extends the notion of well-typedness to DPL to
deal with the missing dependency problem:

Definition 13 (Well-typed DPL). The stub-completion of an SPLS Z, writ-
ten Z?, is the SPL obtained by adding the body {return null;} to all the method dec-
larations in Z. The stub-completion of a DPL L with dependencies Z = Z1, ..., Zn
(n ≥ 0) is the SPL L? = L(Z?1, ..., Z

?
n) obtained by composing L with the stub-

completion of its dependencies. We say that a DPL is well-typed iff its stub-
completion is well-typed.

27

www.manaraa.com

Note that this definition generalizes the notion of well-typedness for SPLs: when
the set of dependencies of the DPL L is empty (n = 0), L is well-typed iff
it is well-typed in the SPL-sense of the term. Moreover, with this definition,
extending the exisiting type-checking algorithms for SPL to manage DPL simply
requires a pre-processing of the DPL to transform it in an SPL as described in
the definition. An additional important property of this definition is that it is
enough to type-check in isolation the DPLs in a DPL-DPL composition to ensure
that the resulting DPL is well-typed:

Theorem 5 (Compositionality of DPL-DPLs composition type check-
ing). Let L be a DPL with dependencies Z = Z1, ..., Zn (n ≥ 0) and L = L1, ..., Ln
be DPLs such that Zi � Li (1 ≤ i ≤ n). If each of the DPLs L, L1, ..., Ln type
checks, then L(L1, ..., Ln) type checks.

Note that the SPLs CapitalAccount and FinancialAccount (in Figure 3), and the
DPL DualAccount (in Figure 6) type check: we can then conclude that the SPL
DualAccount(CapAccount,FinAccount) type checks as well.

Checking the Interface Relation. The compositional analysis of feature
models and the well-typedness of a DPL-DPL composition L(L) presented previ-
ously heavily rely on the interface relation being satisfied between the dependen-
cies of L and the DPLs L. It is possible to automatically check this relation be-
tween any SPLS Z and any DPL L using a predicate formula written match(Z, L).
Due to lack of space, we cannot give the definition of this formula, we simply
state the following theorem:

Theorem 6 (SPL interface checking). If the SPLS Z and SPL L type check
and MZ �ML holds, then match(Z, L) is valid if and only if Z � L holds.

5 Related Work and Conclusions

An extension of DOP to implement MPLs has been outlined in [10] by proposing
linguistic constructs for defining an MPL as an SPL that imports other SPLs.
The feature model and the artifact base of the importing SPL is deeply integrated
with the feature models and the artifact bases of the imported SPLs, respectively.
This extension is very flexible, but it does not enforce any boundary between
different SPLs—thus providing no support for compositional analyses.

Schröter et al. [25] advocated investigating suitable interfaces in order to
support compositional analyses of MPLs for different stages of the development
process. In particular, syntactical interfaces, which build on feature model in-
terfaces to provide a view of reusable programming artifacts, and behavioral
interfaces, which in turn build on syntactical interfaces to support formal veri-
fication. More recently, Schröter et al. [24] proposed a concept of feature model
interface that consists of a subset of features (thus it hides all other features
and dependencies) and used it in combination with a concept of feature model
composition through aggregation to support compositional analyses of feature

28

www.manaraa.com

models—see Section 2.2. In this paper we build on [24] and propose the con-
cepts of SPLS, DPL, and DPL-DPLs composition and show how to use them to
support compositional type checking of delta-oriented MPL. An SPL signature
is a syntactical interface that provides a variability-aware API, expressed in the
flexible and modular DOP approach, specifying which classes and members of
the variants of a DPL are intended to be accessible by variants of other DPLs.

Feature-context interfaces [26] are aimed at supporting type checking SPLs
developed according to the FOP approach which, as pointed out in Section 1,
is encompassed by DOP (see [22] for a detailed comparison between FOP and
DOP). A feature-context interface supports type checking a feature module in
the context of a set of features FC. It provides an invariable API specifying
classes and members of the feature modules corresponding to the features in FC
that are intended to be accessible. In contrast, our concept of SPLS represents
a variability-aware API that supports compositional type checking of MPLs.
Notably, since DOP is an extension of FOP, our results apply also to FOP
SPLs.

Kästner et al. [16] proposed a variability-aware module system, where each
module represents an SPL, that allows for type checking modules in isolation.
Variability inside each module and its interface is expressed by means of #ifdef
preprocessor directives and variable linking, respectively. In contrast to our
SPLSs, module interfaces do not support hiding features and dependencies. A
major difference with respect to our proposal is in the approach used to imple-
ment variability (i.e., to build variants): [16] considers an annotative approach
(#ifdef preprocessor directives), while we consider a transformational approach
(DOP)—we refer to [23,27] for classification and survey of different approaches
for implementing variability.

Schröter et al. [24] defined a slice function for feature models (similar to the
operator proposed by Acher et al. [1]) that generates a feature-model interface by
removing a given set of features. In future work we would like to generalize the
slice function for feature models to DPLs, thus providing an automatic means
for generating an interface for a given DPL.

Recently, Thüm et al. [28] proposed a notion of behavioral interface for sup-
porting compositional verification of FOP SPLs via variability encoding [29]. In
future work we would like to enrich SPLSs with method contracts (thus promot-
ing them to behavioral interfaces) in order to support compositional verification
of delta-oriented DPLs by building on recently proposed proof systems and tech-
niques for the verification of delta-oriented SPLs [11,12,6].

We plan to implement our approach for both DeltaJ 1.5 [17] (a prototyp-
ical implementation of DOP that supports full Java 1.5) and the Abstract
Behavioral Specification modeling language [15].

Acknowledgments. We thank the anonymous reviewers for comments and
suggestions for improving the presentation.

29

www.manaraa.com

References

1. M. Acher, P. Collet, P. Lahire, and R. B. France. Slicing feature models. In 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE
2011), Lawrence, KS, USA, November 6-10, 2011, pages 424–427, 2011.

2. S. Apel, D. S. Batory, C. Kästner, and G. Saake. Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer, 2013.

3. D. Batory. Feature models, grammars, and propositional formulas. In H. Obbink
and K. Pohl, editors, Software Product Lines: 9th International Conference, SPLC
2005, Rennes, France, September 26-29, 2005. Proceedings, volume 3714 of Lecture
Notes in Computer Science, pages 7–20. Springer, 2005.

4. D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-wise refinement. In
Proceedings of the 25th International Conference on Software Engineering, ICSE
’03, pages 187–197, Washington, DC, USA, 2003. IEEE Computer Society.

5. L. Bettini, F. Damiani, and I. Schaefer. Compositional type checking of delta-
oriented software product lines. Acta Informatica, 50(2):77–122, 2013.

6. R. Bubel, F. Damiani, R. Hähnle, E. B. Johnsen, O. Owe, I. Schaefer, and I. C.
Yu. Proof repositories for compositional verification of evolving software systems
- managing change when proving software correct. Transactions on Foundations
for Mastering Change I, 1:130–156, 2016.

7. P. Clements and L. Northrop. Software Product Lines: Practices & Patterns. Ad-
dison Wesley Longman, 2001.

8. F. Damiani and M. Lienhardt. On type checking delta-oriented product lines.
In E. Ábrahám and M. Huisman, editors, Integrated Formal Methods: 12th Inter-
national Conference, IFM 2016, Reykjavik, Iceland, June 1-5, 2016, Proceedings,
volume 9681 of LNCS, pages 47–62. Springer, 2016.

9. F. Damiani and I. Schaefer. Family-based analysis of type safety for delta-oriented
software product lines. In T. Margaria and B. Steffen, editors, Leveraging Applica-
tions of Formal Methods, Verification and Validation. Technologies for Mastering
Change: 5th International Symposium, ISoLA 2012, Heraklion, Crete, Greece, Oc-
tober 15-18, 2012, Proceedings, Part I, volume 7609 of Lecture Notes in Computer
Science, pages 193–207. Springer, 2012.

10. F. Damiani, I. Schaefer, and T. Winkelmann. Delta-oriented multi software product
lines. In Proceedings of the 18th International Software Product Line Conference -
Volume 1, SPLC ’14, pages 232–236. ACM, 2014.

11. R. Hähnle and I. Schaefer. A Liskov Principle for Delta-Oriented Programming. In
T. Margaria and B. Steffen, editors, Leveraging Applications of Formal Methods,
Verification and Validation. Technologies for Mastering Change: 5th International
Symposium, ISoLA 2012, Heraklion, Crete, Greece, October 15-18, 2012, Proceed-
ings, Part I, volume 7609 of Lecture Notes in Computer Science, pages 32–46.
Springer, 2012.

12. R. Hähnle, I. Schaefer, and R. Bubel. Reuse in software verification by abstract
method calls. In Proceedings of the 24th International Conference on Automated
Deduction, CADE’13, pages 300–314. Springer, 2013.

13. G. Holl, P. Grünbacher, and R. Rabiser. A systematic review and an expert survey
on capabilities supporting multi product lines. Information & Software Technology,
54(8):828–852, 2012.

14. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus
for Java and GJ. ACM TOPLAS, 23(3):396–450, 2001.

30

www.manaraa.com

15. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A core
language for abstract behavioral specification. In Formal Methods for Components
and Objects, volume 6957 of Lecture Notes in Computer Science, pages 142–164.
Springer, 2012.

16. C. Kästner, K. Ostermann, and S. Erdweg. A variability-aware module system. In
Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’12, pages 773–792. ACM, 2012.

17. J. Koscielny, S. Holthusen, I. Schaefer, S. Schulze, L. Bettini, and F. Damiani.
DeltaJ 1.5: delta-oriented programming for Java. In PPPJ’14, pages 63–74, 2014.

18. M. Lienhardt and D. Clarke. Conflict detection in delta-oriented programming. In
ISoLA, pages 178–192, 2012.

19. K. Pohl, G. Böckle, and F. van der Linden. Software Product Line Engineering -
Foundations, Principles, and Techniques. Springer, 2005.

20. M. Rosenmüller, N. Siegmund, S. S. ur Rahman, and C. Kästner. Modeling de-
pendent software product lines. In Proceedings of the GPCE Workshop on Modu-
larization, Composition and Generative Techniques for Product Line Engineering
(McGPLE), MIP-0802, pages 13–18. Department of Informatics and Mathematics,
University of Passau, 2008.

21. I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella. Delta-Oriented
Programming of Software Product Lines. In Software Product Lines: Going Beyond
(SPLC 2010), volume 6287 of LNCS, pages 77–91, 2010.

22. I. Schaefer and F. Damiani. Pure delta-oriented programming. In Proceedings of
the 2nd International Workshop on Feature-Oriented Software Development, FOSD
’10, pages 49–56, New York, NY, USA, 2010. ACM.

23. I. Schaefer, R. Rabiser, D. Clarke, L. Bettini, D. Benavides, G. Botterweck,
A. Pathak, S. Trujillo, and K. Villela. Software diversity: state of the art and
perspectives. International Journal on Software Tools for Technology Transfer,
14(5):477–495, 2012.

24. R. Schröter, S. Krieter, T. Thüm, F. Benduhn, and G. Saake. Feature-model
interfaces: The highway to compositional analyses of highly-configurable systems.
In Proceedings of the 38th International Conference on Software Engineering, ICSE
’16, pages 667–678, New York, NY, USA, 2016. ACM.

25. R. Schröter, N. Siegmund, and T. Thüm. Towards modular analysis of multi
product lines. In Proceedings of the 17th International Software Product Line
Conference Co-located Workshops, SPLC’13, pages 96–99. ACM, 2013.

26. R. Schröter, N. Siegmund, T. Thüm, and G. Saake. Feature-context interfaces:
Tailored programming interfaces for spls. In Proceedings of the 18th International
Software Product Line Conference - Volume 1, SPLC’14, pages 102–111. ACM,
2014.

27. T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake. A classification and survey
of analysis strategies for software product lines. ACM Comput. Surv., 47(1):6:1–
6:45, 2014.

28. T. Thüm, T. Winkelmann, R. Schröter, M. Hentschel, and S. Krüger. Variabil-
ity hiding in contracts for dependent spls. In Proceedings of the Tenth Inter-
national Workshop on Variability Modelling of Software-intensive Systems, Va-
MoS’16, pages 97–104. ACM, 2016.

29. A. von Rhein, T. Thm, I. Schaefer, J. Liebig, and S. Apel. Variability encod-
ing: From compile-time to load-time variability. Journal of Logical and Algebraic
Methods in Programming, 85(1, Part 2):125–145, 2016.

31

www.manaraa.com

Translating Active Objects into Colored
Petri Nets for Communication Analysis?

Anastasia Gkolfi, Crystal Chang Din, Einar Broch Johnsen,
Martin Steffen, and Ingrid Chieh Yu

Department of Informatics, University of Oslo, Norway
{natasa,crystald,einarj,msteffen,ingridcy}@ifi.uio.no

Abstract. Actor-based languages attract attention for their ability to
scale to highly parallel architectures. Active objects combine the asyn-
chronous communication of actors with object-oriented programming by
means of asynchronous method calls and synchronization on futures.
However, the combination of asynchronous calls and synchronization in-
troduces communication cycles which lead to a form of communication
deadlock. This paper addresses such communication deadlocks for ABS,
a formally defined active object language which additionally supports
cooperative scheduling to express complex distributed control flow, us-
ing first-class futures and explicit process release points. Our approach
is based on a translation of the semantics of ABS into colored Petri nets,
such that a particular program corresponds to a marking of this net.
We prove the soundness of this translation and demonstrate by example
how the implementation of this net can be used to analyze ABS programs
with respect to communication deadlock.

1 Introduction

The Actor model [1,2] of concurrency is attracting increasing attention for their
decoupling of control flow and communication. This decoupling enables both
scalability (as argued with the Erlang programming language [3] and Scala’s
actor model [14]) and compositional reasoning [11]. Actors are independent units
of computation which exchange messages and execute local code sequentially.
Instead of pushing the current procedure (or method activation) on the control
stack when sending a message as in thread-based concurrency models, messages
are sent asynchronously, without any transfer of control between the actors.
In the actor model, a message triggers the execution of a method body in the
target actor, but a reply to the message is not directly supported. Extending the
basic actor model, active object languages (e.g., [8, 18]), which combine actor-
like communication with object orientation, use so-called futures to reintroduce
synchronization by combining asynchronous message sending with the call and
reply structure of method calls. A future can be seen as a mailbox from which a
reply may be retrieved, such that the synchronization is decoupled from message

? The work was partially supported by the Norwegian Research Council under the
CUMULUS project.

32

www.manaraa.com

sending and associated with fetching the reply from a method call. The caller
synchronizes with the existence of a reply from a method call by performing
a blocking get-operation on the future associated with the call. However, this
synchronization may lead to complex dependency cycles in the communication
chain of a program, and gives rise to a form of deadlock with a set of mutually
blocked objects. This situation is often called a communication deadlock [9].

This paper addresses the problem of communication deadlock for the active
object language ABS [18,19]. ABS is characteristic in that it supports cooperative
concurrency in the active objects. Cooperative concurrency allows the execution
of a method body to be suspended at explicit points in the code, for exam-
ple by testing whether a future has received a value. Cooperative concurrency
leads to a form of local race-free interleaving for concurrently executing active
objects, which allows more execution traces than in standard active objects.
Our approach to tackle the callback problem for ABS is based on a translation
of the formal semantics of ABS into colored Petri nets (CPN) [17]. Petri nets
provide a basic model of concurrency, causality, and synchronization [22, 25],
which has previously been used to analyze communication patterns and dead-
lock, e.g., [10, 15]. CPNs extend the basic Petri net model with support for
modeling data. In contrast to previous work, we do not produce a particular
Petri net for each program to be analyzed. Instead, we provide an encoding and
implementation of the formal semantics of ABS itself as a net, and use colored
tokens in this net to encode the program. Consequently, the number of places
in the net is independent of the size of a program, and different programs are
captured by different markings of the net. For example, this approach allows us
to capture dynamic object creation by firing transitions in the net.

The main contributions of this paper are:

– a deep encoding of the formal semantics of ABS in CPNs;
– a translation of concrete ABS programs into markings of this net;
– a soundness proof for the translation from ABS to CPN; and
– an example demonstrating how to analyze communication deadlocks for ac-

tive objects in ABS using the implementation of this net in CPN Tools [24].

The paper is organized as follows: Section 2 introduces the syntax and seman-
tics of the ABS language, focusing on the language features for communication
and synchronization. Section 3 briefly introduces colored Petri nets. Section 4
explains the translation from ABS semantics to colored Petri nets and the sound-
ness proof for this translation. Section 5 presents a concrete ABS example and
shows how the CPN Tools detects communication deadlock. Section 6 discusses
related work and Section 7 concludes the paper.

2 The ABS Concurrency Model

The Abstract Behavioral Specification language (ABS) [18, 19] is an object-
oriented language for modeling concurrent and distributed systems. ABS com-
bines asynchronous communication from the Actor model [1, 2] with object ori-
entation, and supports cooperative scheduling such that process release points

33

www.manaraa.com

Syntactic categories.
s in Stmt
e in Expr
g in Guard

Definitions.

P ::= CL {T x; s }
CL ::= class C (T x) {T x; M}
Sg ::= T m (T x)

M ::= Sg {T x; s }
s ::= s; s | skip | x = rhs | if e {s} else {s}

| while e do s | suspend | await g | return e
rhs ::= e | cm | new C(e)
cm ::= e!m(e) | x. get
g ::= x? | g ∧ g

Fig. 1. Abstract syntax of ABS, where overline notation such as e and x denotes
(possibly empty) lists over the corresponding syntactic categories.

are explicit in the program code. For the purposes of this paper, we focus on
the communication and synchronization aspects of ABS. Also we ignore other
aspects such as concurrent object groups, i.e., we consider one object per group,
the functional sublanguage, and deployment aspects such as deployment compo-
nents and resource annotations [19]. ABS is statically typed, based on interfaces
as object types [18]. Ignoring the details of the type system, we let primitive
types such as Int and Bool and class names constitute the types of a program,
and ignore subtyping issues.

2.1 The Syntax

Fig. 1 presents the syntax of ABS [18], focusing on communication and synchro-
nization. Programs P consist of class definitions CL and a main block represent-
ing the program’s initial activity. Statements s include standard control-flow
constructs such as sequential composition, assignment statement, conditionals,
and while-loops. ABS supports asynchronous method calls f = e!m(e) where
the caller and callee proceed concurrently and f is a so-called future. A future
is a “mailbox” where the return value from the method call may eventually be
returned to by the callee. A future that contains return value is resolved. The
result of the asynchronous call can then be obtained by f. get. Note that we
may alternatively write asynchronous method call statement as e!m(e), if the
return value is not required. ABS also supports local synchronous calls which
are more standard. For brevity, we elide discussion of synchronous method calls
here (the CPN realization in Sec. 4 also covers synchronous, reentrant self-calls).

The (active) objects of ABS act like monitors, allowing at most one method
activation, or process, to be executed at a time. The local execution in an object
is based on cooperative scheduling by introducing a guard statement await g:
If g evaluates to true, execution may proceed; if the guard g evaluates to false,
execution is suspended and another process may execute. For a future f , the
guard f? evaluates true if f contains the return value from the associated method
call and otherwise it evaluates to false. The suspend-statement always suspends
the executing process. The typical usage of asynchronous calls follow the pattern
f = e!m(e); . . . ;await f?; . . . ;x = f. get.

34

www.manaraa.com

2.2 The Operational Semantics

The operational semantics of ABS specifies transitions between configurations. A
run-time configuration contains objects o(|a, p, q|), messages 〈o′.m(v)〉f , resolved
futures 〈v〉f , and unresolved futures 〈⊥〉f . We use ‖ to denote the (associative
and commutative) parallel composition of such entities in a run-time configura-
tion. Class definitions, which do not change during execution, are assumed to be
implicitly available in the operational rules. The semantics maintains as invari-
ant that object identities o and future identities f are unique. Objects o(|a, p, q|)
are instances of classes with an identifier o, an object state a which maps in-
stance variables to values, an active process p, and an unordered queue q of
suspended processes. A process p is a triple 〈l | s〉f with a local state l (mapping
method-local variables to values), a statement s, and a future reference f . We
omit the future reference in the rules if it is unnecessary. The special process
idle is used to represent that there is no active process. A message 〈o′.m(v)〉f
represents a method call before it starts to execute and the resolved future 〈v〉f
the corresponding return value after method execution.

Fig. 2 gives the rules of the operational semantics, concentrating on the be-
havior of a single active object. A skip-statement has no effect (cf. rule Skip). In
an idle object, the scheduler selects (and removes) a process p from the queue,
and starts executing it (cf. rule Activate). Executing suspend moves the ac-
tive process to the queue, resulting in an idle object (cf. rule Suspend). Assign-
ments are either to instance variables or local variables (cf. rules Assign1 and
Assign2, where σ is used to abbreviate the pair of local states l and object states
a. We assume that these are disjoint, so the two cases are mutually exclusive.)
We omit the standard rules for conditionals and while-loops. Object creation is
captured by rule New-Object, where a′ is the initial state of the new object
(determined by an auxiliary function atts) and p′ is the object’s initial activ-
ity. An asynchronous method call creates a fresh future reference f and adds
a message and unresolved future corresponding to the call to the configuration
(cf. rule Async-Call). Binding a method name to the corresponding method
body is done in rule Bind-Mtd. The binding operation, locating the code of the
method body and instantiating the formal parameters, works in the standard
way via late-binding, consulting the class hierarchy.

The return statement stores the return value in the corresponding future, re-
solving the future (cf. rule Return). The get-command allows the result value
to be obtained from the corresponding future reference if the future’s value has
been produced, in which case the future has been resolved (cf. rule Get). Oth-
erwise, the get-command blocks. An attempt to fetch a future value via a get
statement does not introduce a scheduling point. Should the value never be
produced, e.g., because the corresponding method activation does not return,
the client object of the future, executing the get-command, will be blocked. A
common pattern for obtaining a future value therefore makes use of await: exe-
cuting await x?;x. get checks whether or not the future reference for variable
x has been produced. If not, the semantics of the await statement introduces a

35

www.manaraa.com

(Skip)

o(|a, 〈l |skip; s〉, q|)
_ o(|a, 〈l | s〉, q|)

(Activate)

p = select(q, a)

o(|a, idle, q|) _ o(|a, p, q\p|)

(Suspend)

o(|a, 〈l |suspend; s〉, q|)
_ o(|a, idle, 〈l | s〉 :: q|)

(Assign1)

x ∈ dom(l)

o(|a, 〈l | x = e; s〉, q|)
_ o(|a, 〈l[x 7→ [[e]]σ] | s〉, q|)

(Assign2)

x ∈ dom(a)

o(|a, 〈l | x = e; s〉, q|)
_ o(|a[x 7→ [[e]]σ], 〈l | s〉, q|)

(New-Object)

fresh(o′) a′ = atts(C, [[e]]σ , o′)
o(|a, 〈l | x = new C(e); s〉, q|)

_ o(|a, 〈l | x = o′; s〉, q|) ‖ o′(|a′, idle, ∅|)
(Async-Call)

[[e]]σ = o′ fresh(f)

o(|a, 〈l | x = e!m(e); s〉, q|)
_ o(|a, 〈l | x = f ; s〉, q|) ‖ 〈o′.m([[e]]σ)〉f ‖ 〈⊥〉f

(Bind-Mtd)

p = bind(o,m, v, f)

o(|a, 〈l | s〉, q|) ‖ 〈o.m(v)〉f
_ o(|a, 〈l | s〉, p :: q|)

(Return)

o(|a, 〈l |return (e); s〉f , q|) ‖ 〈⊥〉f
_ o(|a, idle, q|) ‖ 〈[[e]]σ〉f

(Read-Fut)

f = [[e]]σ

o(|a, 〈l | x = e. get; s〉, q|) ‖ 〈v〉f
_ o(|a, 〈l | x = v; s〉, q|) ‖ 〈v〉f

(Await1)

[[e]]σ = f

o(|a, 〈l |await e; s〉, q|) ‖ 〈v〉f
_ o(|a, 〈l | s〉, q|) ‖ 〈v〉f

(Await2)

[[e]]σ = f

o(|a, 〈l |await e; s〉, q|) ‖ 〈⊥〉f
_ o(|a, 〈l |suspend;await e; s〉, q|) ‖ 〈⊥〉f

Fig. 2. Operational semantics

scheduling point. Once x? evaluates to true, the future’s value remains available
so x. get will not block. (see again rule Read-Fut).

Executing an await with a guard expression which evaluates to the identifier
of a resolved future, behaves like a skip (cf. rule Await1). An await on a list of
futures are equivalent to a list of awaits for individual futures. If the future cor-
responding to the guard expression has not been resolved, a suspend-statement
is introduced to enable scheduling another process (cf. rule Await2).

3 Colored Petri Nets

Places and transitions in Petri nets capture true concurrency in terms of causality
and synchronization [22, 25]. Colored Petri nets (CPNs) extend the basic Petri
net formalism to additionally model, e.g., data [16, 17]. A CPN has color sets
(= types). The set of types determines the data values and the operations that
can be used in the net expressions. A type can be arbitrarily complex, defined
by many sorted algebra in the same way as abstract data types. Each place in a
CPN has an associated color set, restricting the kind of data a place can contain.
Tokens in a typed place represent individual values of that type. CPNs in their
basic form (ignoring hierarchical definitions) are defined as follows:

Definition 1 (Colored Petri net). A colored Petri net (CPN) is a tuple
(P, T,A,Σ, V, C,G,E, I) where

– places P and transitions T are disjoint finite sets;

36

www.manaraa.com

– arcs A form a bipartite, directed graph over P and T , i.e., A ⊆ P×T ∪̇T×P ;
– types Σ form a finite set (each type seen as a non-empty “color set”);
– typed variables V form a finite set, i.e., type(v) ∈ Σ for all v ∈ V ;
– a coloring C : P → Σ associates a type to each place.
– labeling functions G : T → ExprV (guards) and E : A → ExprV associate

expressions to transitions and arcs; and the
– initialization function I : P → Expr∅ associates expressions to places.

Expressions are appropriately typed; i.e., type(G(t)) = Bool, type(E(a)) = C(p)→
N where p is the place connected to a, and type(I(p)) = C(p)→ N for all places.

Transitions and their guards express synchronization conditions which, to-
gether with the labels on the arcs, express the transition semantics of Petri nets.
Since tokens are individual typed values and expressions contain variables, the
enabledness of transitions depends on the choice of values for the free variables.

Bindings (or variable assignments) b are mappings from variables to values;
we assume bindings to respect the types of the variables. The variables of a
transition t, written Var(t) ⊆ V , consist of the free variables in the guard of t
and in the arc expressions of the arcs connected to t. The binding of a transition
covers (at least) all variables from Var(t). Let [[E]]b denote the value of expression
E under variable binding b. Given a CPN, a marking M is a function P → (Σ →
N) (the initial marking M0(p) is defined by I(p)) and a step is a selection of the
net’s transitions together with appropriate bindings for the variables of each
transition such that the selected transitions are enabled, defined as follows:

Definition 2 (Enabledness). A transition t is enabled in a marking M for
binding b, if,

1. [[G(t)]]b = true, and
2. M(p) ≥m [[E(p, t)]]b, for all places p ∈ P ,

where ≥m is the usual ordering between multisets.
A step Y is enabled in a marking M , if for all places p, (t, b) from Y , t is
enabled for b in M , M(p) ≥m [[E(p, t)]]Y . The semantics [[E(p, t)]]Y represents the
multi-set

∑
(t,b)∈Y [[E(p, t)]]b.

When t is enabled for b, in M , it may occur or “fire”, leading to the marking
M ′ where M ′(p) = (M(p) − [[E(p, t)]]b) + [[E(t, p)]]b, for all places p. Similarly

for enabled steps Y , M1
Y� M2 denotes that a marking M1 evolves into M2 by

“firing” step Y . A (finite) occurrence sequence is a sequence of markings and
steps of the form

M1

Y1�M2

Y2�M3 . . .Mn

Yn�Mn+1 . (1)

Note that “true concurrency” semantics, typical for Petri nets, allows the si-
multaneous, firing of transitions in a step. Whereas steps are required to be

non-empty, a step which only fires one transition t and binding b, is denoted
t,b→.

A reduction semantics restricted to such single transition steps is equivalent to
the unrestricted semantics, but corresponds to “interleaving concurrency”.

37

www.manaraa.com

4 Translating ABS Semantics to Colored Petri Nets

In this section, we define the translation from ABS to CPNs. After a short in-
troduction covering the core ideas of the translation, in Section 4.2 we highlight
crucial parts of how the ABS semantics are represented on the Petri net level,
focusing on parts of the communication mechanism, in particular dealing with
asynchronous method calls and the resolution of futures via get. In Section 4.3,
we define an abstraction function relating program configurations and the corre-
sponding Petri net markings. Afterwards, Section 4.4 establishes the soundness
of the Petri net semantics, defining a simulation relation between the steps of
the operational semantics and the transitions of the resulting Petri net.

4.1 Overview over the Petri Net Semantics for ABS

The starting point of the translation are abstract ABS programs, i.e. programs
where data values have been abstracted already. Still, there are two remaining
sources of infinity in the state space: creation of (active) objects and creation
of processes and accompanying future references via asynchronous method calls.
Note in passing that in absence of synchronous, reentrant method calls, un-
boundedly growing stacks do not contribute to the potential unboundedness of
the state space. In the translation, one can conceptually distinguish between
language-specific aspects and program-specific aspects: the ABS language and
its semantics is represented by one CPN, common for all programs. This CPN
therefore can be seen as a translation of the ABS-language as such. Roughly,
each semantic rule from the operational semantics of Fig. 2 is represented by
transitions and places, with appropriate types and guards. Fig. 3 shows a birds
eye view of the overall Petri net as represented in the CPN Tools.

In contrast, one particular program, resp. a particular run-time configuration
of a program, is represented by a marking of the Petri net. The expressive power
of colored Petri nets is crucial to achieve such a conceptually clear and structural
translation: since tokens are distinguishable, the transitions and places operated
on type values allow to represent the components of a configuration in a clean
manner. For instance, object identities and process resp. future identities are
represented naturally by resp. types, which correspond to integers.

4.2 CPN-ABS Communication Mechanism

Fig. 3 shows the implementation of this translation with the CPN Tools. From
now on, we will refer to it as CPN-ABS. In CPN-ABS, communication takes place
between objects represented as tokens which carry information about their iden-
tity, their class, and their process pool, therefore triples of the form (id ,class,q).
CPN-ABS supports not only object communication, but also the construction
of the information each object carries. This allows dynamic creation of objects.
CPN-ABS can be structurally divided into two parts: the first part, where all
this information can be dynamically created through transition firing, and the
second part which can simulate the possible communications of the objects. As

38

www.manaraa.com

Fig. 3. ABS semantics implemented with the CPN Tools

shown in Fig. 3, CPN-ABS contains a lot of details in order to faithfully simu-
late ABS. In the following, we concentrate on an extract of the implementation
(cf. Fig. 4), which focuses on the asynchronous communication mechanism. The
implementation covers all ABS rules from Section 2, as well as synchronous reen-
trant self calls. For simplicity, in Fig. 4, we omit details like places which have
an indirect relation with the semantics, and furthermore arcs and inscriptions
where obvious.

As we can see in Fig. 4, there are three disjoint places where the object tokens
can be located: “Active Objects”, “Idle Objects”, and “Blocked Objects”. When
a method of an (active) object returns (here by firing the transition “Return”),
it resolves a future and it moves the object to the “Idle Objects” place, as one
can observe from the Return rule of the semantics. The inverse can be achieved
through the Activate rule, where a process from the pool is activated. This is
simulated by the “Activate” transition with the corresponding token moving.

Transition “Caller” selects the calling object from the “Active Objects” place
(here we omit how the object selection is being done). We have two cases of
communication through asynchronous method calls: immediately followed by a
get statement or not. Both are simulated in the yellow region of the picture: It
contains one place, “Is synchronous”, which has a token of type Bool . Its value
corresponds to the presence of a get statement in the obvious way. By firing the
transition “Get”, we alternate the value of the token. So, from this yellow region,
transition “Caller” takes the information on whether the asynchronous call is
followed by a get statement or not. In the latter case, the value of b is false and
transition “Caller” maintains the object in the “Active Objects” place (which has
the corresponding meaning for the status of the object – see rule Async-Call
of the semantics), otherwise it sends the caller object to the “Blocked Objects”
place until the waiting future can be retrieved from the “Future” place (see rule
Read-Fut in the ABS semantics).

As the places related to the status of an object are disjoint, the callee object
can reside only in one among the three corresponding places. Therefore, one
among the transitions “Active callee”, “Blocked callee”, and “Idle callee” can
fire each time for the selected object (here, again, we omit details about how

39

www.manaraa.com

the object selection is done). In CPN-ABS, the process pool is implemented as a
FIFO queue. So, the transitions that refer to the callee update its process queue
by adding at the end a new process related to this particular method call. They
also create a communication pair token at the “Communication pairs” place by
matching the token of the “Caller” place (created by the “Caller” transition)
with the callee object and the process created for this method execution.

4.3 The Abstraction Function

In this section, we define a translation from ABS configurations to Petri net
markings. The translation is given in the form of an abstraction function α. In
it’s core, it’s a structural translation of ABS-configurations, ignoring the data
parts of the program, i.e., the value of variables in the instance states and local
states. Hence the translation yields an abstraction at the same time, and the
resulting Petri nets marking over-approximate the original behavior, due to this
form of data abstraction. Let Obj be the set of objects in an ABS program,
Class the set of its classes and Proc the set of the processes. We define the
following injections from those sets to the set of positive integers: h : Obj → Z+,
d : Class → Z+, and g : Proc → Z+. Let C be the set of the configurations
of an ABS program and Msg the set of the invocation messages. We define the
projection functions from the ABS configurations as follows:

– cl : C → Class which projects the object class in an ABS configuration,

– ob : C → Obj which projects the objects in ABS configurations,

– pr : C → P(Proc) which projects the process pools of the objects of ABS
configurations,

– msg : C → Msg which projects the messages Msg of ABS configurations and

– fut : C → F which projects the set of resolved futures that are related to get
statements for each configuration.

Then, let m : Msg → Proc be the injection which maps each invocation message
to the process that will be created for the execution of the called method. Let
furthermore fr : F → Proc be the injection from the set of resolved futures F
related to get statements to the set of processes Proc, since they are related
to the change of the blocked status of the objects which wait to read those
futures. Finally, let pq :P(Proc) → P(Z+) be the mapping from the process
pools to sets of (unique) positive integers such that for every process pool S,
pq(S) = {g(s) ∈ Z+ | s ∈ S}. In CPN-ABS, we model objects as tokens which
carry information about their identity, their class and their process pool. As a
consequence, each object is represented as a triple (id ,class,q), where id is the
object identifier of type Int , class is the corresponding class of the object i.e.
the class identifier of type Int and q is the process pool of the object of type list
of integers.

Now, we can define the abstraction function α. In the following, P is the set
of the places and M(p) the marking of a place p in CPN-ABS. Then, for all

40

www.manaraa.com

if b = false
then ob

else empty

Active
callee

Idle
callee

Blocked
callee

Commu
nication

pairs

Caller

Active
objects

Caller

Idle
objects

Blocked
objects

Is_synch-
ronous

Get

Future

Read
future

Return

Activate

b

¬bBOOL

OBJOBJ

OBJ

OBJ
OBJ_PAIRS_PROC

PROC

ob

if b = true
then ob else empty

Fig. 4. Extract of the communication mechanism of CPN-ABS

configurations c ∈ C:

α(c) =
⋂ {M | ∃p, p′, p′′ ∈ P s.t. p 6= p′ 6= p′′

∧((h ◦ ob)(c), (d ◦ cl)(c), (pq ◦ pr)(c)) ∈M(p)
∧ (m ◦msg)(c) ∈M(p′)
∧ (g ◦ fr ◦ fut)(c) ∈M(p′′)} ,

(2)

where,
⋂

denotes intersection over sets of multisets. Observe that, for every ABS
configuration, the above intersection is nonempty, i.e. there is a marking such
that all the objects of the configuration are represented as tokens in specific
places of the model.

4.4 Soundness Proof of the Translation

In this section we sketch the soundness proof of the translation, establishing a
simulation relation between the small step operational semantics of ABS and
the transitions of CPN-ABS. In particular, we need to prove that, for any ABS
configuration c, if c _r c

′ for some semantic rule r, then there exists a mark-

ing M ′ and a sequence of CPN-ABS transitions u, such that α(c)
u→ M ′ and

α(c′) ⊆m M ′ (where, with ⊆m we denote the subset relation between sets of
multisets as an extension of ≤m). To establish the above relation, we need to
prove that u has a corresponding CPN-ABS occurrence sequence, i.e. that all
the transitions of u can fire in the same order as they appear in u.

Consequently, we try to construct each transitions sequence u in such a way
that there exists the corresponding occurrence sequence. We use a finite alphabet
B which consists of the names of the transitions that appear in CPN-ABS and

41

www.manaraa.com

construct words over this alphabet that correspond to occurrence sequences,
with ε to be the empty word. We should mention here, that, for all b ∈ B, b0 = ε.
We call these words occurrence words. The set that contains those occurrence
words can be given from the image of a translation function Tr : Sem → B∗,
where Sem is the set of the ABS semantic rules of Section 2. In the following,
we provide some definitions and lemmas in order to achieve modularity for the
construction of occurrence words. We will denote as En(M) the set of enabled
transitions for a marking M and Mreach the set of reachable markings of the
Petri net.

Definition 3 (Independent transition). A transition t ∈ T is called inde-

pendent if, for any marking M ∈ Mreach , t ∈ En(M) and M
t→ M ′ implies

En(M) ⊆ En(M ′).

Definition 4 (Post-transition). The post-transitions of a transition t ∈ T are
given by the function PostTrans : T ×Mreach → P(T) where PostTrans(t,M) =

{t′ ∈ En(M ′) |M t→M ′}.

Lemma 1 (Composition). The composition of an occurrence sequence M1
t1→

M2
t2→ . . .

tn→Mn+1 with another occurrence sequence M ′1
t′1→M ′2

t′2→ . . .
t′m→M ′m+1

is the occurrence sequence M1
t1→ M2

t2→ . . .
tn→ Mn+1

t′1→ M ′′2
t′2→ . . .

t′m→ M ′′m+1,
whenever M ′1 ⊆m Mn+1 and [[G(t′1)]]bn+1

= true and furthermore
∧

2≤i≤m[[G(t′i)]]bi =
true and M ′j ⊆m M ′′j , for all 1 ≤ j ≤ m+ 1.

Proof. For the prefix of the sequence which is identical to the first composed
sequence, the result is trivial . Then, since M ′1 ⊆m Mn+1, after t′1, obviously, if
[[G(t′2)]]b′′2 = true, then M ′2 ⊆m M ′′2 , and so on. ut

In the sequel, we accordingly use the term composition of occurrence words.

Lemma 2. For all ABS semantic rules r, Tr(r) is an occurrence word.

Proof. The idea is to assign to Tr a concrete value for each possible argument
(i.e. for each rule of the operational semantics, and then, for each value, to prove
that it is an occurrence word). As in Section 4.2 we presented just an extract
of the real implementation, we will present one representative case, namely rule
Read-Fut rule based on the Petri net extract of Fig. 4.

In this case, Tr(Read-Fut) = “Get”i−1“Caller” “Read Future”, where i =
1 if the marking of the place “Is synchronous” is true before firing “Get”, 0
otherwise. We need to prove that it is an occurrence word. Indeed, let c be the
configuration before the application of the rule Read-Fut and c′ the one after
it. Let, ob1 be the object abstracted from c. Then ob1 ∈ M(“Active Objects”).

“Get” is an independent transition. If i = 0, then M
Get→ M (1) is an occur-

rence sequence. Otherwise, M (1) = M . Obviously, M (1)(“Is synchronous”) =
{true}. Transition “Caller” ∈ En(M (1)), since “Caller” ∈ En(M) and also

“Caller” is a post-transition of “Get”, so we can take M (1) Caller→ M (2) where

42

www.manaraa.com

1 class Service(Int limit) {
2 Producer prod = new Producer(); Proxy proxy = new Proxy(limit,this,prod);
3 Proxy lastProxy = proxy;
4
5 Void run() { this!produce(); }
6 Void subscribe(Client cl){Fut<ProxyI> f; f = lastProxy!add(cl); lastProxy = f.get;}
7 Void produce(){proxy!start publish(); }
8 }
9 class Proxy(Int limit, Service server, Producer prod) {

10 List<Client> myClients = Nil; Proxy nextProxy;
11
12 Proxy add(Client cl){ Proxy lastProxy = this; Fut<ProxyI> f’;
13 if length(myClients) < limit {myClients = append(myClients, cl);}
14 else {if nextProxy == null {nextProxy = new Proxy(limit,server,prod);}
15 f’ = nextProxy!add(cl); lastProxy = f’.get;} return lastProxy; }
16
17 Void start publish(){ Fut<ProxyI> f’’; f’’ = prod!detectNews(); await f’’?;
18 News ns = f’’.get; this!publish(ns); }
19
20 Void publish(News ns){ myClients!signal(ns);
21 if nextProxy == null {server!produce();} else {nextProxy!publish(ns);} }
22 }

Fig. 5. Implementation of the publisher-subscriber example.

ob1 ∈M (2)(“Blocked Objects”). So, “Get” “Caller” is an occurrence word. From
the hypothesis of Read-Fut we know that there exists a marking M (3) s.t.
f ∈ M (3)(“Future”) and from Lemma 1, we obtain that “Get” i−1 “Caller”
“Read Future” is an occurrence word. ut

Theorem 1 (Simulation). CPN-ABS is a (weak) simulation of ABS.

Proof. We need to prove that, for any ABS configuration c, if c _r c
′ for some

semantic rule r ∈ Sem, then there exists a marking M ′ and an occurrence

word given by Tr(r), such that α(c)
Tr(r)→ M ′ and α(c′) ⊆m M ′. This follows

straightforwardly from the definition of the abstraction function α, the image of
Tr , and from Lemma 2. ut

5 Deadlock Detection

The translation CPN-ABS and the underlying Petri net tool can be used for
the detection of possible communication deadlocks of ABS programs. CPN-ABS
contains three disjoint places, where, depending on the status of objects (i.e. ac-
tive, idle or blocked), objects can be located. The place “Blocked Objects” which
hosts the blocked objects has a color set of pair (ob,p), where ob is object in-
voking an asynchronous call with a get-statement, i.e. an asynchronous blocking
call, and p is the process that has been added to the process queue of the callee

43

www.manaraa.com

for the execution of the called method. Recall that ob is of color (id ,class,q),
where id is object identity, class is the class that the object belongs to, and q
is the process queue of the object. Given this particular structure of CPN-ABS,
there is a deadlock cycle [21] if and only if there exists a marking of the place
“Blocked Objects”, in which there exists n tokens (ob1, p1) to (obn, pn) that form
a cycle, i.e. for 1 ≤ i < n, pi ∈ qi+1 and pn ∈ q1 (where qi is the process queue
of the ith object). This deadlock situation can be detected by the state space
report of the model checker of the CPN Tool used to implement CPN-ABS.

5.1 Example

We now use the publisher-subscriber example of Fig. 5 to illustrate how CPN-ABS
detects communication deadlocks. Service objects publish news updates to
subscribing clients through a chain of Proxy objects. Each proxy object handles
a bounded number of clients. Service objects handle a subscribe request effi-
ciently by delegating its time-consuming parts to Proxy objects, and the proxies
publish news to clients using asynchronous calls (without futures) to make the
cooperation efficient. As asynchronous method calls without get-statements do
not cause deadlocks, we omit them from our analysis and only consider asyn-
chronous blocking calls of the form f = e!m(e); . . . ;x = f.get, where there are
no suspension points in between. There are two asynchronous blocking calls in
lines 6 and 15 in the example, namely f = lastProxy !add(cl); lastProxy = f.get
and f ′ = nextProxy !add(cl); lastProxy = f ′.get. The former one expresses that
a Service object invokes method add on a Proxy object through method
subscribe. Similarly, the later one expresses that a Proxy object invokes
method add on the next Proxy object through method add. By applying the
model checker on an Intel i7 3.4 GHz, in less than 1 second we get the full state
space report in which tokens of color ((o1,Service, q), p) and ((o3,Proxy , q′), p′)
can be found in the place “Blocked Objects”, and for all p, p′, q, q′ we have p /∈ q′
and p′ /∈ q. This shows that the implementation of the publisher-subscriber
protocol is deadlock free.

Now, we slightly modify the protocol, where get-statements are added to
the method calls in lines 7 and 21 and the await statement in line 17 is re-
moved. In this case, CPN-ABS detects a communication deadlock cycle shown
in Fig. 6, where p ∈ q′ and p′ ∈ q and both objects are trapped in the place
“Blocked Objects” and cannot exit from there; in Fig. 6, the third and the fifth
argument in the color tuples are outside of the scope of this work, so we ignore
them, while, the existence of the two zero value tokens is for initialization rea-
sons and they do not affect the deadlock analysis. Based on the information we
obtained from this reachable marking, we can trace back to the program code
and determine the deadlock represented by the call chain.

Remark that the translation supports scalability: the size of the net is inde-
pendent from the program and represents the ABS semantics as such. I.e., by
increasing the number of Proxy objects or clients, only the number of tokens is
affected and the analysis is highly automated.

44

www.manaraa.com

Fig. 6. Deadlock detection by CPN-ABS.

6 Related Work

Deadlock detection is traditionally concerned with the usage of locks for thread-
based concurrency. This line of work is surveyed in [23], which develops a type
and effect system to capture lock manipulation for such a language. However,
in active objects communication deadlocks are caused by call-cycles with syn-
chronization, and the cooperative scheduling of ABS makes the analysis more
complex. The problem has been studied using different approaches, including
behavioral types [13], cost analysis [12], protocol specifications [21], and Petri
nets [10] (discussed below). As the problem is undecidable and the approaches
differ substantially, it is difficult to say exactly how they relate to each other
in terms of strength of the proposed analyses. Petri nets and its extensions are
popular formalisms to model and analyze systems with concurrency, communi-
cation and synchronization [22, 25]. Petri nets have in particular been applied
to protocol and work flow analysis, but have also been used to study process
algebra (e.g., [5, 7]), more recently including asynchronous communication [4].
Approaches which encode programming language features into Petri nets have
been developed for Ada [15] and more recently for, e.g., Java [20], and for chore-
ography languages like Orc [6]. In general, these approaches translate programs
into nets such that the size of the program determines the size of the net and
dynamic invocations or object creation cause difficulties. Previous work on dead-
lock analysis for active objects using Petri nets [10] follows a similar approach
such that places represent locks on objects, futures, and processes. Transitions
are introduced for each possible caller and callee to a method. To obtain a finite
net, the approach abstracts from the actual number of futures such that the
wrong future may be accessed in the Petri net. But if the net is deadlock free, so
is the original active object program. In contrast to these approaches encoding a
specific program as a net, our approach directly encodes the language semantics
as a CPN and uses markings to define the concrete program; the colors of CPN
are used to distinguish different method invocations and to create new objects
and the size of the net itself is independent of the specific program.

7 Conclusion

This paper proposes an encoding of the formal semantics of ABS as a net, such
that a program is given as a marking for this net. Exploiting the colored tokens,

45

www.manaraa.com

our net can support dynamic program behavior. We provide a soundness proof
for our encoding and show how a model checker for colored Petri nets can be
used to analyze communication deadlock for active objects in ABS. Whereas this
paper has focused on communication and synchronization for ABS programs,
ABS supports the specification of real-time behavior, deployment architectures,
and resource-aware systems [19]. Our next step is to extend the model to support
these features, and explore the usage of colored Petri nets for resource analysis
and to compare resource-management strategies for distributed ABS programs.

References

1. G. Agha. ACTORS: A Model of Concurrent Computations in Distributed Systems.
The MIT Press, Cambridge, Mass., 1986.

2. G. Agha and C. Hewitt. Concurrent programming using actors. In Object-Oriented
Concurrent Programming. The MIT Press, 1987.

3. J. Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, 2007.

4. P. Baldan, F. Bonchi, F. Gadducci, and G. V. Monreale. Modular encoding of syn-
chronous and asynchronous interactions using open Petri nets. Science of Computer
Programming, 109, 2015.

5. E. Best, R. R. Devillers, and M. Koutny. Petri net algebra. Monographs in Theo-
retical Computer Science. An EATCS Series. Springer, 2001.

6. R. Bruni, H. C. Melgratti, and E. Tuosto. Translating orc features into Petri nets
and the join calculus. In WS-FM’06, volume 4184 of LNCS. Springer, 2006.

7. N. Busi and R. Gorrieri. A Petri net semantics for pi-calculus. In CONCUR ’95,
volume 962 of LNCS. Springer, 1995.

8. D. Caromel and L. Henrio. A Theory of Distributed Object. Springer, 2005.
9. K. M. Chandy, J. Misra, and L. M. Haas. Distributed deadlock detection. ACM

Trans. Comput. Syst., 1(2), 1983.
10. F. S. de Boer, M. Bravetti, I. Grabe, M. Lee, M. Steffen, and G. Zavattaro. A

Petri net based analysis of deadlock for active objects and futures. In FACS 2012,
LNCS. Springer, 2013.

11. F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In
ESOP’07, volume 4421 of LNCS. Springer, Mar. 2007.

12. A. Flores-Montoya, E. Albert, and S. Genaim. May-happen-in-parallel based dead-
lock analysis for concurrent objects. In FMOODS/FORTE 2013, volume 7892 of
LNCS. Springer, 2013.

13. E. Giachino, C. Laneve, and M. Lienhardt. A framework for deadlock detection in
core ABS. Software and System Modeling, 15(4), 2016.

14. P. Haller and M. Odersky. Scala actors: Unifying thread-based and event-based
programming. Theoretical Computer Science, 410(2–3), 2009.

15. J. Ichbiah, J. G. P. Barnes, J. C. Heliard, B. Krieg-Brückner, O. Roubine, and
B. A. Wichmann. Modules and visibility in the Ada programming language. In
On the Construction of Programs. Cambrige University Press, 1980.

16. K. Jensen. Coloured Petri Nets. In Petri Nets: Central Models and their Properties,
(Advances in Petri Nets 1986) Part I, volume 254 of LNCS. Springer, 1987.

17. K. Jensen and L. M. Kristensen. Coloured Petri Nets – Modelling and Validation
of Concurrent Systems. Springer, 2009.

46

www.manaraa.com

18. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A core
language for abstract behavioral specification. In FMCO 2010, volume 6957 of
LNCS. Springer, 2011.

19. E. B. Johnsen, R. Schlatte, and S. L. T. Tarifa. Integrating deployment archi-
tectures and resource consumption in timed object-oriented models. Journal of
Logical and Algebraic Methods in Programming, 84(1), 2015.

20. B. Long, P. A. Strooper, and L. Wildman. A method for verifying concurrent
Java components based on an analysis of concurrency failures. Concurrency and
Computation: Practice and Experience, 19(3), 2007.

21. O. Owe and I. C. Yu. Deadlock detection of active objects with synchronous and
asynchronous method calls. In Proceedings of NIK 2014, 2014.

22. C. Petri. Kommunikation mit Automaten. PhD thesis, Universität Bonn, 1962.
23. K. I. Pun. Behavioural static analysis for deadlock detection. PhD thesis, Depart-

ment of informatics, University of Oslo, Norway, 2014.
24. A. V. Ratzer, L. Wells, H. M. Lassen, M. Laursen, J. F. Qvortrup, M. S. Stissing,

M. Westergaard, S. Christensen, and K. Jensen. CPN tools for editing, simulat-
ing, and analysing coloured Petri nets. In ICATPN 2003, volume 2679 of LNCS.
Springer, 2003.

25. W. Reisig. Petri Nets, volume 4 of EATCS Monographs in Computer Science.
Springer, 1985.

47

www.manaraa.com

Composing Families of Timed Automata

Guillermina Cledou?, José Proença??, and Luis Barbosa? ? ?

HASLab INESCTEC and Universidade do Minho, Portugal
mgc@inesctec.pt, {jose.proenca,lsb}@di.uminho.pt

Abstract. Featured Timed Automata (FTA) is a formalism that en-
ables the verification of an entire Software Product Line (SPL), by cap-
turing its behavior in a single model instead of product-by-product. How-
ever, it disregards compositional aspects inherent to SPL development.
This paper introduces Interface FTA (IFTA), which extends FTA with
variable interfaces that restrict the way automata can be composed, and
with support for transitions with atomic multiple actions, simplifying
the design. To support modular composition, a set of Reo connectors are
modelled as IFTA. This separation of concerns increases reusability of
functionality across products, and simplifies modelling, maintainability,
and extension of SPLs. We show how IFTA can be easily translated into
FTA and into networks of Timed Automata supported by UPPAAL. We
illustrate this with a case study from the electronic government domain.

Keywords: Software Product Lines; Featured Timed Automata; Com-
positionality

1 Introduction

Software product lines (SPLs) enable the definition of families of systems where
all members share a high percentage of common features while they differ in
others. Among several formalisms developed to support SPLs, Featured Timed
Automata (FTA) [5] model families of real-time systems in a single model. This
enables the verification of the entire SPL instead of product-by-product. How-
ever, FTA still need more modular and compositional techniques well suited to
SPL-based development.

To address this issue, this paper proposes Interface FTA (IFTA), a mecha-
nism enriching FTA with (1) interfaces that restrict the way multiple automata

? Supported by the European Regional Development Fund (ERDF) through the Oper-
ational Programme for Competitiveness and Internationalisation (COMPETE 2020),
and by National Funds through the Portuguese funding agency, FCT, within project
POCI-01-0145-FEDER-016826 and FCT grant PD/BD/52238/2013.

?? Supported by FCT under grant SFRH/BPD/91908/2012.
? ? ? Supported by the project SmartEGOV: Harnessing EGOV for Smart Governance

(Foundations, Methods, Tools) / NORTE-01-0145-FEDER-000037, supported by Norte
Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL
2020 Partnership Agreement, through the European Regional Development Fund
(ERDF)

48

www.manaraa.com

interact, and (2) transitions labelled with multiple actions that simplify the de-
sign. Interfaces are synchronisation actions that can be linked with interfaces
from other automata when composing automata in parallel. IFTA can be com-
posed by combining their feature models and linking interfaces, imposing new
restrictions over them. The resulting IFTA can be exported to the UPPAAL
real-time model checker to verify temporal properties, using either a network of
parallel automata in UPPAAL, or by flattening the composed automata into a
single one. The latter is better suited for IFTA with many multiple actions.

We illustrate the applicability of IFTA with a case study from the electronic
government (e-government) domain, in particular, a family of licensing services.
This services are present in most local governments, who are responsible for
assessing requests and issuing licenses of various types. E.g., for providing public
transport services, driving, construction, etc. Such services comprise a number
of common functionality while they differ in a number of features, mostly due
to specific local regulations.

The rest of this paper is structured as follows. Section 2 presents some back-
ground on FTA. Section 3 introduces IFTA. Section 4 presents a set of Reo
connectors modeled as IFTA. Section 5 discusses a prototype tool to specify and
manipulate IFTA. Section 6 presents the case study. Section 7 discusses related
work, and Section 8 concludes.

2 Featured Timed Automata

This work builds on top of Featured Timed Automata (FTA) an extension to
Timed Automata, introduced by Cordy et al. [5] to verify real-time systems pa-
rameterised by a variability model. This section provides an overview of FTA
and their semantics, based on Cordy et al..

Informally, a Featured Timed Automaton is an automaton whose edges are
enriched with clocks, clock constraints (CC), synchronisation actions, and feature
expressions (FE). A clock c ∈ C is a logical entity that captures the (continuous
and dense) time that has passed since it was last reset. When a timed automaton
evolves over time, all clocks are incremented simultaneously. A clock constraint
is a logic condition over the value of a clock. A synchronisation action a ∈ A is
used to coordinate automata in parallel; an edge with an action a can only be
taken when its dual action in a neighbor automaton is also on an edge that can be
taken simultaneously. Finally, a feature expression (FE) is a logical constraint
over a set of features. Each of these features denotes a unit of variability; by
selecting a desired combination of features one can map an FTA into a Timed
Automaton.

Figure 1 exemplifies a simple FTA with 2 locations, `0 and `1, with a clock
c and 2 features cf and mk , standing for the support for brewing coffee and for
including milk in the coffee. Initially the automaton is in location `0, and it can
evolve either by waiting for time to pass (growing the clock c) or by taking one of
its 2 transitions to `1. The top transition, for example, is labelled by the action
coffee and is only active when the feature cf is present. Taking this transition

49

www.manaraa.com

`0 `1 c ≤ 5

cappuccino
cf ∧mk , c := 0

coffee
cf , c := 0

brew
c ≥ 2

[fm = mk → cf]

Fig. 1: Example of a Featured Timed Automata over the features cf and mk .

triggers the reset of the clock c back to 0, evolving to the state `1. Here it can
again wait for the time to pass, but for at most 5 time units, determined by the
invariant c ≤ 5 in `1. The transition labelled with brew has a different guard:
a clock constraint c ≥ 2 that allows this transition to be taken only when the
clock c is greater than 2. Finally, the lower expression [fm = mk → cf] defines
the feature model. I.e., how the features relate to each other. In this case the mk
feature can only be selected when the cf feature is also selected.

We now formalize clock constraints, feature expressions, and the definition
of FTA and its semantics.

Definition 1 (Clock Constraints (CC), valuation, and satisfaction). A
clock constraint over a set of clocks C, written g ∈ CC(C) is defined as follows

g ::= c < n | c ≤ n | c > n | c ≥ n | g ∧ g | > (clock constraint)

where c ∈ C, and n ∈ N.
A clock valuation η for a set of clocks C is a function η : C → R≥0 that

assigns each clock c ∈ C to its current value ηc. We use RC to refer to the set
of all clock valuations over a set of clocks C. Let η0(c) = 0 for all c ∈ C be the
initial clock valuation that sets to 0 all clocks in C. We use η + d, d ∈ R≥0, to
denote the clock assignment that maps all c ∈ C to η(c) + d, and let [r 7→ 0]η,
r ⊆ C, be the clock assignment that maps all clocks in r to 0 and agrees with η
for all other clocks in C \ r.

The satisfaction of a clock constraint g by a clock valuation η, written η |= g,
is defined as follows

η |= > always
η |= c� n if η(c)� n
η |= g1 ∧ g2 if η |= g1 ∧ η |= g2

(clock satisfaction)

where � ∈ {<,≤, >,≥}.
Definition 2 (Feature Expressions (FE) and satisfaction). A feature ex-
pression ϕ over a set of features F , written ϕ ∈ FE(F), is defined as follows

ϕ ::= f | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | > (feature expression)

where f ∈ F is a feature. The other logical connectives can be encoded as usual:
⊥ = ¬>; ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2; and ϕ1 ↔ ϕ2 = (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1).

50

www.manaraa.com

Given a feature selection FS ∈ F over a set of features F , and a feature
expression ϕ ∈ FE(F), FS satisfies ϕ, noted FS |= ϕ, is defined as follows:

FS |= > always
FS |= f ⇔ f ∈ FS
FS |= ϕ1 ♦ ϕ2 ⇔ FS |= ϕ1 ♦ FS |= ϕ2

FS |= ¬ϕ ⇔ FS 6|= ϕ

(FE satisfaction)

where ♦ ∈ {∧,∨}.

Definition 3 (Featured Timed Automata (FTA) [5]). An FTA is a tuple
A = (L,L0, A,C, F,E, Inv, fm, γ) where L is a finite set of locations, L0 ⊆ L
is the set of initial locations, A is a finite set of synchronisation actions, C is
a finite set of clocks, F is a finite set of features, E is a finite set of edges,
E ⊆ L × CC(C) × A × 2C × L, Inv : L → CC(C) is the invariant, a partial
function that assigns CCs to locations, fm ∈ FE (F) is a feature model defined
as a Boolean formula over features in F , and γ : E → FE (F) is a total function
that assigns feature expressions to edges.

Notation: We write A.L, A.L0, A.A, etc., to denote the locations, initial loca-

tions, actions, etc., of an FTA A, respectively. We write `1
cc,a,c−−−−→ `2 to denote

that (`1, cc, a, c, `2) ∈ A.E, whenever automaton A is clear from the context.
The semantics of FTA is given in terms of Featured Transition Systems

(FTSs) [4]. An FTS extends Labelled Transition Systems with a set of features
F , a feature model fm, and a total function γ that assigns FE to transitions.

Definition 4 (Semantics of FTA). Let A = (L,L0, A,C, F,E, Inv , fm, γ) be
an FTA. The semantics of A is defined as an FTS 〈S, S0, A, T, F, fm, γ′〉, where
S ⊆ L × RC is the set of states, S0 = {〈`0, η0〉 | `0 ∈ L0} is the set of initial
states, T ⊆ S × (A ∪ R≥0) × S is the transition relation, with (s1, α, s2) ∈ T

sometimes noted s1
α−−→ s2, and γ′ : T → FE(F) is a total function that assigns

feature expressions to transitions. The transition relation is defined as follows.

〈`, η〉 d−→ 〈`, η + d〉 if η |= Inv(`) and (η + d) |= Inv(`), for d ∈ R≥0 (1)

〈`, η〉 a−→ 〈`′, η′〉 if ∃ ` g,a,r−−−−→ `′ ∈ E s.t. η |= g, η |= Inv(l),

η′ = [r 7→ 0]η, and η′ |= Inv(`′) (2)

where for each of the rules above, the associated featured expression is defined as

γ′(〈`, η〉 d−→ 〈`, η + d〉) = > and γ′(〈`, η〉 a−→ 〈`′, η′〉) = γ(`
g,a,r−−−−→ `′).

3 Interface Featured Timed Automata

Multiple FTAs can be composed and executed in parallel, using synchronising
actions to synchronise edges from different parallel automata. This section intro-
duces interfaces to FTA that: (1) makes this implicit notion of communication

51

www.manaraa.com

CM
(Figure 1)

RouterPaymentcoin?
pay

payed!
pay

coffee?
cf

cappuccino?
cf ∧mk

brew!
i?
ϕi

o1!
ϕo1

o2!
ϕo2

Fig. 2: Representation of 3 IFTA, depicting their interfaces (blue) and associated
feature expressions.

more explicit, and (2) allows multiple actions to be executed atomically in a tran-
sition. Synchronisation actions are lifted to so-called ports, which correspond to
actions that can be linked with actions from other automata. Hence composition
of IFTA is made by linking ports and by combining their variability models.

Definition 5 (Interface Featured Timed Automata). An IFTA is a tuple
A = (L, l0, A,C, F,E, Inv , fm, γ, I, O) where L,A,C, F, Inv , fm, γ are defined as
in Featured Timed Automata, there exists only one initial location l0, edges in E
contain sets of actions instead of single actions (E ⊆ L×CC(C)×2A×2C×L),
I ⊆ A is a set of input ports, and O ⊆ A is a set of output ports, I ∩O = ∅.

Given a port p ∈ P we write p? and p! to denote that p is an input or output
port, respectively, following the same conventions as UPPAAL for actions, and
write p instead of {p} when clear from context. The lifting of actions into sets
of actions will be relevant for the composition of automata. We call interface of
an IFTA A the set A.I ∪ A.O of all input and output ports of an automaton,
and assign to each of these ports a feature expression based on the feature
expressions of the edges as follows. Notation: we use i, i1, etc., and o, o1, etc.
to refer specifically to input and output ports of an IFTA, respectively.

Definition 6 (Feature Expression of an Action). Given an IFTA A, the
feature expression of any action a is the disjunction of the feature expressions of
all of its associated edges. More precisely, it is given by γA(a), defined below.

γA(a) =
∨
{A.γ(e) | e ∈ A.E ∧ e = (, , S, ,) ∧ a ∈ S} (FE of an action)

Figure 2 depicts the interfaces of 3 different IFTA. The leftmost is a payment
machine that receives actions representing coins and publishes actions confirming
the payment, whose actions are dependent on a feature called pay . The rightmost
is the coffee machine from Figure 1. Finally, the middle one depicts a connector
Router that could be used to combine the payment and the coffee machines. This
notion of combining IFTA is the core contribution of this work: how to reason
about the modular composition of timed systems with variable interfaces.

The semantics of IFTA is given in terms of FTSs, similarly to the semantics
of FTA with the difference that transitions are now labelled with sets of actions.
We formalize this as follows.

Definition 7 (Semantics of IFTA). Let A be an IFTA, its semantics is an
FTS F = (S, s0, A, T, F, fm, γ), where S, A, F , fm, and γ are defined as in
Definition 4, s0 = 〈`0, η0〉 is now the only initial state, and T ⊆ S×(2A∪R≥0)×S
now supports transitions labelled with sets of actions.

52

www.manaraa.com

We now introduce two operations: product and synchronisation, which are
used to define the composition of IFTA. The product operation for IFTA, unlike
the classical product of timed automata, is defined over IFTA with disjoint sets
of actions and clocks, performing their transitions in an interleaving fashion.

Definition 8 (Product of IFTA). Let A1 and A2, be two different IFTA with
disjoint actions and clocks, the product of A1 and A2, denoted A1 × A2, is a
new IFTA A, such that

A = (L1×L2, `01 × `02 , A1 ∪A2, C1 ∪C2, F1 ∪F2, E, Inv , fm1 ∧ fm2, γ, I1 ∪ I2, O1 ∪O2)

where E, Inv, and γ are defined as follows

– E is defined by the rules below, for any S1, S2 ⊆ 2A1 ∪ 2A2 .

`1
g1,S1,r1−−−−−−→1 `

′
1

〈`1, `2〉 g1,S1,r1−−−−−−→ 〈`′1, `2〉
`2

g2,S2,r2−−−−−−→2 `2
′

〈`1, `2〉 g2,S2,r2−−−−−−→ 〈`1, `′2〉

`1
g1,S1,r1−−−−−−→1 `

′
1 `2

g2,S2,r2−−−−−−→2 `
′
2

〈`1, `2〉 g1∧g2,S1∪S2,r1∪r2−−−−−−−−−−−−−→ 〈`′1, `′2〉

– Inv(`1, `2) = Inv1(`1) ∧ Inv2(`2).
– The associated feature expression of the 3 rules above, is defined as follows.

γ(〈`1, `2〉 g,S,r−−−−→ 〈`′1, `2〉) = A1.γ(`1
g,S,r−−−−→1 `

′
1)

γ(〈`1, `2〉 g,S,r−−−−→ 〈`1, `′2〉) = A2.γ(`2,
g,S,r−−−−→2 `

′
2)

γ(〈`1, `2〉 g1∧g2,S1∪S2,r1∪r2−−−−−−−−−−−−−→ 〈`′1, `′2〉) = A1.γ(`1
g1,S1,r1−−−−−−→1 `

′
1) ∧

A2.γ(`2
g2,S2,r2−−−−−−→2 `

′
2)

The synchronisation operation over an IFTA A connects and synchronises two
actions a and b from A.A. The resulting automaton has transitions without
neither a and b, nor both a and b. The latter become internal transitions.

Definition 9 (synchronisation). Given an IFTA A = (L, `0, A,C, F,E, Inv ,
fm, γ, I, O) and two actions a, b ∈ A, the synchronisation of a and b is given by
∆a,b(A) = (L, `0, A\{a, b}, C, F,E′, Inv , fm ′, γ, I\{a, b}, O\{a, b}) where E′ and
fm ′ are defined as follows

– E′ = {` g,S,r−−−−→ `′ ∈ E | a /∈ S and b /∈ S} ∪
{` g,S\{a,b},r−−−−−−−−→ `′ | ` g,S,r−−−−→ `′ ∈ E and a ∈ S and b ∈ S}

– fm ′ = fm ∧ (γA(a)↔ γA(b)).

Together, the product and the synchronisation can be used to obtain in a
compositional way, a complex IFTA modelling SPLs built out of primitive IFTA.

53

www.manaraa.com

Definition 10 (Composition of IFTA). Given two disjoint IFTA, A1 and
A2, with possible shared features, and a set of bindings {(a1, b1), . . . , (an, bn)},
where ak, bk ∈ (A1.I ∪A2.I ∪A1.O ∪A2.O), such that ak ∈ A1.A⇔ bk 6∈ A1.A,
1 ≤ k ≤ n, the composition of A1 and A2 is defined as A1 1a1↔b1,...,an↔bn A2 =
∆a1,b1 . . . ∆an,bn(A1 ×A2).

Figure 3 exemplifies the composition of the coffee machine (CM) and Router
IFTA from Figure 2. The resulting IFTA combines the feature models of the
CM and Router, imposing additional restrictions given by the binded ports,
E.g., the binding (o1, coffee) imposes that o1 will be present, if and only if,
coffee is present (which depends on the feature expressions of each port), I.e.,
(fi∧fo1)↔ cf . In the composed IFTA, transitions with binded actions transition

together, E.g., transition (`2, `0)
i−→ (`2, `1) with feature expression fi ∧ fo1

∧ cf

represents the joint transitions `0
i,o1−−−→ `0 and `0

coffee−−−−→ `1. The transitions from
CM and Router labelled with non-binded actions (i and brew) can transition
independently or together.

`0 `1

c ≤ 5

cappuccino
cf ∧mk , c := 0

coffee
cf , c := 0

brew
c ≥ 2

`2
{i, o1}
fi ∧ fo1

{i}
fi ∧ ¬(fo1 ∨ fo2)

{i, o2}
fi ∧ fo2

i?
f i

o1
!

f i
∧ f

o 1

o2
!

f i
∧ f

o 2
co

ffee
?
cf

ca
ppucc

in
o?

cf
∧m

k

br
ew

!

./
o1 ↔ coffee
o2 ↔ cappuccino

fm = (fo1 ∨ fo2)→ fi
fm = mk → cf

l2, l0 l2, l1
brew
c ≥ 2

i
fi ∧ fo1 ∧ cf , c := 0

i
fi ∧ fo2 ∧ cf ∧mk , c := 0

{i,brew }
c ≥ 2, fi ∧ ¬(fo1 ∨ fo2)

i
fi ∧ ¬(fo1 ∨ fo2)

i
fi ∧ ¬(fo1 ∨ fo2)

fm = mk → cf ∧ (fo1 ∨ fo2)→ fi ∧ (fi ∧ fo1)↔ cf ∧ (fi ∧ fo2)↔ (cf ∧mk)

i?
fi ∧ (¬(fo1 ∨ fo2) ∨

(fo1 ∧ cf) ∨
(fo2 ∧ cf ∧mk))

brew!=

Fig. 3: Composition of a Router IFTA (top left) with the CM IFTA (top right)
by binding ports (o1, coffee) and (o2, cappuccino), yielding the IFTA below.

To study properties of IFTA operations, we define the notion of IFTA equiva-
lence in terms of bisimulation over their underlying FTSs. We formally introduce
the notion of timed bisimulation adapted to FTSs.

54

www.manaraa.com

Definition 11 (Timed Bisimulation). Given two FTSs F1 and F2, we say
R ⊆ F1.S×F2.S is a bisimulation, if and only if, for all possible feature selections
FS ∈ 2F1.F∪F2.F , FS |= F1.fm ⇔ FS |= F2.fm and for all (s1, s2) ∈ R we have:

– ∀ t = s1
α−−→1 s

′
1, α ∈ 2A ∪ R≥0, ∃ t′ = s2

α−−→2 s
′
2 s.t. (s′1, s

′
2) ∈ R and

FS |= F1.γ(t)⇔ FS |= F2.γ(t′),

– ∀ t′ = s2
α−−→2 s

′
2, α ∈ 2A ∪ R≥0, ∃ t = s1

α−−→1 s
′
1 s.t. (s′1, s

′
2) ∈ R and

FS |= F1.γ(t)⇔ FS |= F2.γ(t′)

where A = A1.A ∪ A2.A.

Two states s1 ∈ S1 and s2 ∈ S2 are bisimilar, written s1 ∼ s2, if there exists
a bisimulation relation containing the pair (s1, s2). Given two IFTA A1 and A2,
we say they are bisimilar, written A1 ∼ A2, if there exists a bisimulation relation
containing the initial states of their corresponding FTSs.

Proposition 1 (Product is commutative and associative). Given two
IFTA A1 and A2 with disjoint set of actions and clocks, A1 × A2 ∼ A2 × A1,
and A1 × (A2 ×A3) ∼ (A1 ×A2)×A3.

Proof. Follows trivially by definition of product and FTSs, and because ∪ and
∧ are associative and commutative.

The synchronisation operation is commutative, and it interacts well with product.
The following proposition captures these properties.

Proposition 2 (synchronisation commutativity). Given two IFTA A1 and
A2, the following properties hold:

1. ∆a,b∆c,dA1 = ∆c,d∆a,bA1, if a, b, c, d ∈ A1.A, a, b, c, d different actions.
2. (∆a,bA1)×A2 ∼ ∆a,b(A1 ×A2), if a, b ∈ A1.A and A1.A ∩ A2.A = ∅.

Proof. Property 1 follows trivially from the definition of synchronisation.
For property 2, for simplicity, let us assume A = (∆a,bA1) × A2, A′ =

∆a,b(A1 × A2), and A12 = A1 × A2, and let F1 and F2 be the underlying
FTSs of A and A′. It is easy to see that both resulting automata, A and A′,
share the same set of edges, and their feature models are not the same but are
equivalent. We have that, A.fm = A1.fm ∧ A2.fm ∧ (γA1(a) ↔ γA1(b)) and
A′.fm = A1.fm ∧ A2.fm ∧ (γA12

(a) ↔ (γA12
(b)). Without loss of generality we

consider only action a and show that γA1
(a) is logically equivalent to γA12

(a).
By definition of γA1

we have

γA1
(a) =

∨
({A1.γ(`1

g1,S1,r1−−−−−−→ `′1) | `1 g1,S1,r1−−−−−−→ `′1 ∈ A1.E, a ∈ S1}

Similarly, by definition of γA12
we have

γA12
(a) =

∨
({A1.γ(`1

g1,S1,r1−−−−−−→ `′1) | `1 g1,S1,r1−−−−−−→ `′1 ∈ A1.E,
a ∈ S1} ∪

{A1.γ(`1
g1,S1,r1−−−−−−→ `′1) ∧ A2.γ(`2

g2,S2,r2−−−−−−→ `′2) | `1 g1,S1,r1−−−−−−→ `′1 ∈ A1.E,

`2
g2,S2,r2−−−−−−→ `′2 ∈ A2.E

a ∈ S1})

55

www.manaraa.com

It is easy to see that for all FS ∈ 2A1.F∪A2.F · FS |= γA1
(a) ⇔ FS |= γA12

(a).
Then, for all FS ∈ 2A1.F∪A2.F · FS |= F1.fm ⇔ FS |= F2.fm. ut

4 Reo connectors as IFTA

Reo is a channel-based exogenous coordination language where complex coordi-
nators, called connectors, are compositionally built out of simpler ones, called
channels [2]. Exogenous coordination facilitates anonymous communication of
components. Each connector has a set of input and output ports, and a formal
semantics of how data flows from the inputs to the outputs. We abstract from
the notion of data and rather concentrate on how execution of actions associated
to input ports enables execution of actions associated to output ports.

Table 1 shows examples of basic Reo connectors and their corresponding
IFTA. For example, Merger(i1, i2, o) synchronises each input port, separately,
with the output port, and FIFO1 (i, o) introduces the notion of delay by exe-
cuting its input while transitions to a state where time can pass, enabling the
execution of its output without time restrictions.

Modelling Reo connectors as IFTA enables them with variable behavior based
on the presence of ports connected through synchronisation to their ports. We
associate a feature fa to each port a of a connector and define its behavior in
terms of these features. Table 1 shows Reo basic connectors as IFTA with variable
behavior. Bold edges represent the standard behavior of the corresponding Reo
connector, and thinner edges model variable behavior. For example, the Merger

connector supports the standard behavior, indicated by the transitions `0
{ik,o}−−−−→

`0, k = 1, 2 and the corresponding feature expression fk ∧ fo ; and a variable
behavior, in which both inputs can execute independently at any time if o is

not present, indicated by transitions `0
{ik}−−−→ `0, k = 1, 2 and the corresponding

feature expression fk ∧ ¬fo .
The Sync connector behaves as the identity when composed with other au-

tomata. The following proposition captures this property.

Proposition 3 (Sync behaves as identity). Given an IFTA A and a Sync
connector, ∆i,a(A× Sync(i, o)) ∼ A[o/a] with

– A[o/a].fm = A.fm ∧ Sync.fm ∧ ((fi ∧ fo)↔ γA(a))
– A[o/a].γ((, , S, ,)) = A.γ((, , S, ,)) ∧ (fi ∧ fo)), s.t. a ∈ S
– A[o/a].F = A.F ∪ {fi, fo}

if i, o 6∈ A.A and a ∈ A.A. A[o/a] is A with all occurrences of a replaced by o.

Proof. First for simplicity, let AS = (A× Sync(i, o)), and A′ = ∆i,a(AS). Lets
note that the set of edges in A′ is defined as follows

A′.E ={(`1, `0)
g,S,r−−−−→ (`′1, `0) ∈ AS .E | i /∈ S and a /∈ S} ∪ (1)

{(`1, `0)
g,S\{i,a},r−−−−−−−−→ (`′1, `0) | (`1, `0)

g,S,r−−−−→ (`′1, `0) ∈ AS .E
and i ∈ S and a ∈ S} (2)

56

www.manaraa.com

Table 1: Examples of basic Reo connectors and their corresponding IFTA.

Connector IFTA Connector IFTA

i o

Sync

`0

{i}
fi ∧ ¬fo

{i, o}
fi ∧ fo

fm = fo → fi

i1 i2

SyncDrain

`0

{i1}
fi1 ∧ ¬fi2

{i2}
¬fi1 ∧ fi2

{i1, i2}
fi1 ∧ fi2

fm = >

i o

FIFO1
`0 `1

{i}
fi ∧ fo

{i}
fi ∧ ¬fo

{o}
fi ∧ fo

fm = fo → fi

i1

i2

o

Merger

`0

{i1, o}
fi1 ∧ fo

{i2, o}
fi2 ∧ fo

{i1}
fi1 ∧ ¬fo

{i2}
fi2 ∧ ¬fo

fm = fo → (fi1 ∨ fi2)

o1

o2

i

Router

`0

{i1}
fi ∧ ¬fo1 ∧ ¬fo2

{i, oi}
fi ∧ fo1

{i, o2}
fi ∧ fo2

fm = (fo1 ∨ fo2)→ fi

o1

o2

i

Replicator

`0
{i, o1, o2}

fi∧
fo1 ∧ fo2

{i, o1}
fi ∧ fo1 ∧ ¬fo2

{i, o2}
fi∧

¬fo1 ∧ fo2

{i}
fi ∧ ¬fo1 ∧ ¬fo2

fm = (fo1 ∨ fo2)→ fi

where `0 is the initial and only location of Sync. Let F1 and F2 be the underlying
FTS of A′ and A[o/a], and note that R = {(〈(`1, `0), η〉, 〈`1, η〉) | `1 ∈ A[o/a].S}
is a bisimulation between states of F1 and F2. Let (〈(`1, `0), η〉, 〈`1, η〉) ∈ R.
The proof for delay transitions follows trivially from the fact that Inv(`1, `0) =
Inv(`1) for all `1 ∈ A[o/a].S.

Lets consider any action transition 〈(`1, `0), η〉 S−−→ 〈(`′1, `0), η′〉 ∈ F1.E. If

it comes from a transition in (1), then ∃ `1
g,S,r−−−−→ `′1 ∈ A.E s.t . a 6∈ S,

thus ∃ 〈`1, η〉 S−−→ 〈`′1, η′〉 ∈ F2.E; if it comes from (2), then ∃ `1
g,S′,r−−−−→

`′1 ∈ A.E s.t . a ∈ S′, thus ∃ 〈`1, η〉
S′[o/a]−−−−−→ 〈`′1, η′〉 ∈ F2.E, where S =

S′∪{i, o}\{i, a} = S′[o/a]. Conversely, if ∃ 〈`1, η〉 S−−→ 〈`′1, η′〉 ∈ F2.E and o 6∈ S,

then ∃ (`1, `0)
g,S,r−−−−→ (`′1, `0) ∈ AS .E s.t . i /∈ S ∧ a /∈ S, thus ∃ 〈(`1, `0), η〉 S−−→

〈(`′1, `0), η′〉 ∈ F1.E; if o ∈ S, then ∃ (`1, `0)
g,S′∪{o}\{a},r−−−−−−−−−−−→ (`′1, `0) ∈ (∆i,a(AS)).E,

such that S = S′[o/a] = S′∪{o}\{a}, thus ∃ 〈(`1, `0), η
S−−→ 〈(`′1, `0), η′〉〉 ∈ F1.E.

In both cases, we have F1.γ(〈(`1, `0), η〉 S−−→ 〈(`′1, `0), η′〉) = F2.γ(〈`1, η〉 S−−→
〈`′1, η′〉). Furthermore, A′.fm = A[o/a].fm. ut

57

www.manaraa.com

5 Implementation

We developed a prototype tool in Scala1 consisting of a small Domain Specific
Language (DSL) to specify (networks of) (N)IFTA and manipulate them. Al-
though we do not provide the formal definitions and semantics due to space
constraints, informally, a network of any kind of automata is a set of automata
parallel composed (||) and synchronised over a set of shared actions.

Main features supported by the DSL include: 1) specification of (N)IFTA,
2) composition, product and synchronisation over IFTA, 3) conversion of NIFTA
to networks of FTA (NFTA) with committed states (CS), and 4) conversion of
NFTA to UPPAAL networks of TA (NTA) with features. Listing 1.1 shows how
the router connector from Table 1 can be specified using the DSL. A compre-
hensive list of functionality and more examples, including the case study from
Section 6 can be found in the tool’s repository1.

val router = newifta ++ (
0 --> 0 by "i,o1" when "vi" && "vo1",
0 --> 0 by "i,o2" when "vi" && "vo2",
0 --> 0 by "i" when "vi" && not("vo1" || "vo2")

) get "i" pub "o1,o2" when ("vo1" || "vo2") --> "vi"

Listing 1.1: Example specification of a router connector using the Scala DSL.

A NIFTA can be converted into a NFTA with committed states, which in
turn can be converted into a network of UPPAAL TA, through a stepwise con-
version, as follows. NIFTA to NFTA. Informally, this is achieved by converting
each transition with set of actions into to a set of transitions with single actions.
All transitions in this set must execute atomically (committed states between
them) and support all combinations of execution of the actions. NFTA to UP-
PAAL NTA. First, the NFTA obtained in the previous step is translated into a
network of UPPAAL TA, where features are encoded as Boolean variables, and
transition’s feature expressions as logical guards over Boolean variables. Second,
the feature model of the network is solved using a SAT solver to find the set
of valid feature selections. This set is encoded as a TA with an initial commit-
ted location and outgoing transitions to new locations for each element in the
set. Each transition initializes the set of variables of a valid feature selection.
The initial committed state ensures a feature selection is made before any other
transition is taken.

When translating IFTA to FTA with committed states, the complexity of
the model grows quickly. For example, the IFTA of a simple replicator with 3
output ports consists of a location and 8 transitions, while its corresponding FTA
consists of 23 locations and 38 transitions. Without any support for composing
variable connectors, modelling all possible cases is error prone and it quickly
becomes unmanageable. This simplicity in design achieved through multi-action
transitions leads to a more efficient approach to translate IFTA to UPPAAL
TA, in particular by using the composition of IFTA. The IFTA resulting from
composing a network of IFTA, can be simply converted to an FTA by flattening
the set of actions in to a single action, and later into an UPPAAL TA.

1 https://github.com/haslab/ifta

58

www.manaraa.com

6 Case Study: Licensing Services in e-government

This section presents a case study of using IFTA to model a family of public
licensing services. All services in the family support submissions and assessment
of licensing requests. Some services, in addition, require a fee before submitting
(pa), others allow appeals on rejected requests (apl), or both. Furthermore, ser-
vices that require a fee can support credit card (cc) or PayPal payments (pp),
or both. Functionality is divided in components and provided as follows. Each
component can be visualized in Figure 4. We omit the explicit illustration of
interfaces and rather use the notation ?,! to indicate whether an action corre-
sponds to an input or output, respectively. In addition, we use the same action
name in two different automata to indicate pairs of actions to be linked. The
feature model, also omitted, is initially > for each of these IFTA.

App - Models licenses requests. An applicant must submit the required doc-
uments (subdocs), and pay a fee (payapp) if pa is present, before submitting
(submit). If the request is accepted (accept) or considered incomplete (incom-
plete), the request is closed. If it is rejected (reject) and it is not possible to
appeal (¬apl), the request is closed, otherwise a clock (tapl) is reseted to track
the appeal window time. The applicant has 31 days to appeal (App.Inv(`5)),
otherwise the request is canceled (cancelapp) and closed. If an appeal is submit-
ted (appeal), it can be rejected or accepted, and the request is closed.

CC and PP - Handle payments through credit cards and PayPal, respectively.
If a user requests to pay by credit card (paycc) or PayPal (paypp), a clock is reset
to track payment elapsed time (tocc and topp). The user has 1 day (CC .Inv(`1)
and PP .Inv(`1)) to proceed with the payment which can result in success (paidcc
and paidpp) or cancellation (cancelcc and cancelpp).

Appeal - Handles appeal requests. When an appeal is received (appeal), a
clock is reseted to track the appeal submission elapsed time (tas). Authorities
have 20 days (Appeal .Inv(`1)) to start assessing the request (assessapl).

Preassess - Checks if a request contains all required documents. When a
request is received (submit), a clock is reseted to track the submission elapsed
time (ts). Authorities have 20 days (Preasses.Inv(`1)) to check the completeness
of the documents and notify whether it is incomplete (incomplete) or ready to
assessed (assessapp).

Assess - Analyzes requests. When a request is ready to be assessed (assess),
a clock is reseted to track the processing elapsed time (tp). Authorities have 90
days to make a decision of weather accept it (accept) or reject it (reject).

We use a set of Reo connectors to integrate these IFTA. The final integrated
model can be seen in Figure 5. For simplicity, we omit the feature expressions
associated to ports and the resulting feature model. Broadly, we can identify
two new components in this figure: Payment - (right of App) Orchestrates pay-
ment requests based on the presence of payment methods. It is composed by
componets CC, PP, and a set of connectors. A router synchronises payment
requests (payapp) with payment by CC or PayPal (paypp or paycc). A merger
synchronises the successful response (paidpp or paidcc), while other merger syn-
chronises the cancellation response (cancelpp or cancelcc) from either CC or PP.

59

www.manaraa.com

On top of the composed feature model, we add the restriction pa ↔ cc ∨ pp to
ensure payment is supported, if and only if, Credit card or PayPal are supported;
and Processing - (left of App) Orchestrates the processing of licenses requests
and appeals (if apl is present). It is composed by Appeal, Preassess, Assess, a set
of trivial sync connectors and a merger that synchronises assessment requests
from either Appeal or Preassess (assessapl or assessapp) with Assess (assess).

By using IFTA, connectors are reused and it is simple to create complex con-
nectors out of simple ones. If in the future a new payment methods is supported,
the model can be updated by simple using a three output replicator and two three
inputs mergers. By composing the future model and inferring new restrictions
based on how interfaces are connected, it is possible to reason about the vari-
ability of the entire network, E.g., we can check if the resulting feature model
satisfies variability requirements or if the interaction of automata is consistent
with the presence of features. In addition, by using the DSL we can translate
this components to UPPAAL to verify properties such as: Deadlock free – A[]

not deadlock; Liveness – a submission and an appeal will eventually result in
an answer (App.`4 --> App.`0 and App.`6 --> App.`0, respectively); Safety –
a submission must be processed within 110 days (A[] App.`4 imply App.tsub

<=110).

`0

`1

`2
`3

`4

`5 tapl ≤ 31
`6

subdocs

payapp!
pa, tpay := 0

submit!¬pa, tsub := 0

paidapp?
pa

ca
nce

lpay?

pa
subm

it!

pa,tsub
:=

0

accept?

incomplete?

reject?
¬apl re

jec
t?

ap
l,
ta
pl
:=

0

cancelappapl

appeal!
apl, tapl := 0

accept?

a
p
l

reject?

a
p
l

App

`0 `1
ts ≤ 20

submit?
ts := 0

incomplete!

assessapp!

Preassess

`0 `1
tp ≤ 90

assess?
tp := 0

accept!

reject!

Assess

`0 `1
tas ≤ 20

appeal?
apl, tas := 0

assessapl!
apl

Appeal

`0 `1
tocc ≤ 1

paycc?
cc, tocc := 0

paidcc!
cc

cancelcc!
cc

CC

`0 `1
topp ≤ 1

paypp?
pp, topp := 0

paidpp!
pp

cancelpp!
pp

PP

Fig. 4: IFTA modelling domain functionality.

7 Related Work

Related work is discussed following two lines: 1) compositionality and modularity
of SPLs, and 2) compositionality and interfaces for automata.

60

www.manaraa.com

Preassess

Appeal

Assess
App

PP

CC

paypp

paycc

payapp
assessapp

asse
ssa

pl

assess

incomplete

submit

appeal

accept

reject

paidpp

paidcc

paidapp

cancelpp

cancelcc

cancelpay

Fig. 5: IFTA for a family of Licensing Services

Compositionality and modularity of SPLs. An extension to Petri Nets, Fea-
ture Nets (FNs) [11] enables specifying the behavior of an SPL in a single model,
and supports composition of FNs by applying deltas FNs to core FNs. An ex-
tension to CCS process calculus consisting on a modular approach to modelling
and verifying variability of SPLs based on DeltaCCS [9]. resulting in models
of features that can be reused easily. A compositional approach for verification
of software product lines [10] where new features and variability may be added
incrementally, specified as finite state machines with variability information.

Interfaces and compositionality of automata. Interface automata [1] use in-
put interfaces to support incremental design and independent implementability
of components, allowing compatibility checking of interfaces for partial system
descriptions, without knowing the interfaces of all components, and separate
refinement of compatible interfaces, respectively. [6] presents a specification the-
ory for I/O TA supporting refinement, consistency checking, logical and struc-
tural composition, and quotient of specifications. In [8] Modal I/O automata
are used to construct a behavioral variability theory for SPL development and
can serve to verify if certain requirements can be satisfied from a set of existing
assets. [7] proposes a formal integration model based on Hierarchical TA for real
time systems, with different component composition techniques. [3] presents a
compositional specification theory to reason about components that interact by
synchronisation of I/O actions.

8 Conclusions

This paper introduced IFTA, a formalism for modelling SPL in a modular and
compositional manner, which extends FTA with variable interfaces to restrict
the way automata can be composed, and with multi-action transitions that sim-
plify the design. A set of Reo connectors were modeled as IFTA and used to
orchestrate the way various automata connect. We discussed a prototype tool to
specify and manipulate IFTA, which takes advantage of IFTA composition to
translate them into TA that can be verified using the UPPAAL model checker.

Delegating coordination aspects to connectors enables separation of concerns.
Each automata can be designed to be modular and cohesive, facilitating the
maintenance, adaptability, and extension of an SPL. In particular, facilitates the

61

www.manaraa.com

replacement of components and enables changes in the way they interact without
affecting their internal definition. Using bare FTA for designing variable connec-
tors, can be error prone and it quickly becomes unmanageable. IFTA simplifies
this design by enabling the modeling of automata in isolation and composing
them by explicitly linking interfaces and combining their feature models.

Future work includes studying further properties of IFTA and the impact of
integrating this notion of composition and variability with well known specifica-
tion and refinement theories for I/O automata.

References

1. de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng. Notes
26(5), 109–120 (Sep 2001), http://doi.acm.org/10.1145/503271.503226

2. Arbab, F.: Reo: A channel-based coordination model for component composition.
Mathematical. Structures in Comp. Sci. 14(3), 329–366 (Jun 2004), http://dx.
doi.org/10.1017/S0960129504004153

3. Chen, T., Chilton, C., Jonsson, B., Kwiatkowska, M.: A Compositional Specifica-
tion Theory for Component Behaviours, pp. 148–168. Springer Berlin Heidelberg,
Berlin, Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-28869-2_8

4. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A.: Symbolic model checking
of software product lines. International Conference on Software Engineering, ICSE
pp. 321–330 (2011), http://dl.acm.org/citation.cfm?id=1985838

5. Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A.: Behavioural modelling and
verification of real-time software product lines. In: Proceedings of the 16th Interna-
tional Software Product Line Conference - Volume 1. pp. 66–75. SPLC ’12, ACM,
New York, NY, USA (2012), http://doi.acm.org/10.1145/2362536.2362549

6. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed i/o automata:
A complete specification theory for real-time systems. In: Proceedings of the 13th
ACM International Conference on Hybrid Systems: Computation and Control. pp.
91–100. HSCC ’10, ACM, New York, NY, USA (2010), http://doi.acm.org/10.
1145/1755952.1755967

7. Jin, X., Ma, H., Gu, Z.: Real-time component composition using hierarchical timed
automata. In: Seventh International Conference on Quality Software (QSIC 2007).
pp. 90–99 (Oct 2007)

8. Larsen, K.G., Nyman, U., Wasowski, A.: Modal i/o automata for interface and
product line theories. In: European Symposium on Programming. pp. 64–79.
Springer (2007), http://dx.doi.org/10.1007/978-3-540-71316-6_6

9. Lochau, M., Mennicke, S., Baller, H., Ribbeck, L.: Incremental model checking of
delta-oriented software product lines. Journal of Logical and Algebraic Methods
in Programming 85(1, Part 2), 245 – 267 (2016), http://dx.doi.org/10.1016/j.
jlamp.2015.09.004, formal Methods for Software Product Line Engineering

10. Millo, J.V., Ramesh, S., Krishna, S.N., Narwane, G.K.: Compositional Verifica-
tion of Software Product Lines, pp. 109–123. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013), http://dx.doi.org/10.1007/978-3-642-38613-8_8

11. Muschevici, R., Proença, J., Clarke, D.: Feature nets: behavioural modelling of
software product lines. Software & Systems Modeling 15(4), 1181–1206 (2016),
http://dx.doi.org/10.1007/s10270-015-0475-z

62

www.manaraa.com

Debugging of Concurrent Systems using
Counterexample Analysis

Gianluca Barbon1, Vincent Leroy2, and Gwen Salaün1

1 Univ. Grenoble Alpes, CNRS, Inria, LIG, France
2 Univ. Grenoble Alpes, CNRS, LIG, France

Abstract. Model checking is an established technique for automatically
verifying that a model satisfies a given temporal property. When the
model violates the property, the model checker returns a counterexam-
ple, which is a sequence of actions leading to a state where the property
is not satisfied. Understanding this counterexample for debugging the
specification is a complicated task for several reasons: (i) the counterex-
ample can contain hundreds of actions, (ii) the debugging task is mostly
achieved manually, and (iii) the counterexample does not give any clue
on the state of the system (e.g., parallelism or data expressions) when
the error occurs. This paper presents a new approach that improves the
usability of model checking by simplifying the comprehension of coun-
terexamples. Our solution aims at keeping only actions in counterexam-
ples that are relevant for debugging purposes. To do so, we first extract
in the model all the counterexamples. Second, we define an analysis algo-
rithm that identifies actions that make the behaviour skip from incorrect
to correct behaviours, making these actions relevant from a debugging
perspective. Our approach is fully automated by a tool that we imple-
mented and applied on real-world case studies from various application
areas for evaluation purposes.

1 Introduction

Concurrent and distributed applications are used in various domains, such as
cyber-physical systems, software and middleware technologies, Service Oriented
Computing, cloud computing, or the Internet of Things. The design and devel-
opment of these applications is complex and cannot be achieved without intro-
ducing subtle bugs, which are defects of the software that prevent the correct
behaviour of the system. The process of finding and resolving bugs is commonly
called debugging. This process is a challenging task for a developer, since it is
difficult for a human being to understand the behaviour of all the possible execu-
tions of this kind of systems, and bugs can be hidden inside parallel behaviours.
There is a need for automatic techniques that can help the developer in detecting
and understanding those bugs.

Model checking [8] is an established technique for verifying concurrent sys-
tems. It takes as input a model and a property. A model describes all the possible
behaviours of a concurrent program and is produced from a specification of the

63

www.manaraa.com

system. In this paper, we adopt Labelled Transition Systems (LTS) as model
description language. A property represents the requirements of the system and
is usually expressed with a temporal logic. Given a model and a property, a
model checker verifies whether the model satisfies the property. When the model
violates the property, the model checker returns a counterexample, which is a
sequence of actions leading to a state where the property is not satisfied.

Although model checking techniques automatically find bugs in concurrent
systems, it is still difficult to interpret the returned counterexamples for sev-
eral reasons: (i) the counterexample can contain hundreds (even thousands) of
actions, (ii) the debugging task is mostly achieved manually (satisfactory auto-
matic debugging techniques do not yet exist), and (iii) the counterexample does
not give any clue on the state of the system (e.g., parallelism or data expressions)
when the error occurs.

This work aims at developing a new approach for simplifying the compre-
hension of counterexamples and thus favouring usability of model checking tech-
niques. In order to do this, we propose a method to produce all the counterexam-
ples from a given model and to compare them with the correct behaviours of the
model to better identify actions that caused the bug. The goal of our approach is
to return as result an abstraction of counterexamples, which contains only those
actions.

More precisely, we define a method that first extracts all the counterexamples
from the original model containing all the executions. This procedure is able to
collect all the counterexamples in a new LTS, maintaining a correspondence with
the original model. Second, we define an analysis algorithm that identifies actions
at the frontier between the new LTS and the original one. The frontier represents
the area where counterexamples and correct behaviours, that share a common
prefix, split in different paths. Actions at the frontier are relevant since they are
responsible for the choice between a correct behaviour and a counterexample.
We have implemented our approach in a tool and validated it on a set of real-
world case studies from various application areas. Our experiments show that our
approach is able to reduce the size of counterexamples by keeping only relevant
actions at the frontier, and thus making the debugging process easier.

The rest of this paper is organized as follows. Section 2 introduces LTS models
and model checking notions. Section 3 presents our counterexample abstraction
techniques, including the generation of the LTS containing all the counterex-
amples and the process for identifying relevant actions in counterexamples. In
Section 4, we describe our implementation and we apply it on real-word exam-
ples. Section 5 presents related work while Section 6 concludes this paper.

2 Preliminaries

In this work, we adopt Labelled Transition Systems (LTS) as behavioural mod-
els of concurrent programs. An LTS consists of states and labelled transitions
connecting these states.

64

www.manaraa.com

Definition 1. (LTS) An LTS is a tuple M = (S, s0, Σ, T) where S is a finite
set of states; s0 ∈ S is the initial state; Σ is a finite set of labels; T ⊆ S×Σ×S
is a finite set of transitions.

A transition is represented as s
l−→ s′ ∈ T , where l ∈ Σ. An LTS is produced

from a higher-level specification of the system described with a process algebra
for instance. Specifications can be compiled into an LTS using specific compilers.
In this work, we use LNT as specification language [7] and compilers from the
CADP toolbox [11] for obtaining LTSs from LNT specifications (see Section 4
for more details). However, our approach is generic in the sense that it applies
on LTSs produced from any specification language and any compiler/verification
tool. An LTS can be viewed as all possible executions of a system. One specific
execution is called a trace.

Definition 2. (Trace) Given an LTS M = (S, s0, Σ, T), a trace of size n ∈
N is a sequence of labels l1, l2, . . . , ln ∈ Σ such that s0 l1−→ s1 ∈ T, s1

l2−→
s2 ∈ T, . . . , sn−1

ln−→ sn ∈ T . The set of all traces of M is written as t(M).

Note that t(M) is prefix closed. One may not be interested in all traces of an
LTS, but only in a subset of them. To this aim, we introduce a particular label
δ, called final label, which marks the end of a trace, similarly to the notion of
accepting state in language automata. This leads to the concept of final trace.

Definition 3. (Final Trace) Given an LTS M = (S, s0, Σ, T), and a label δ,

called final label, a final trace is a trace l1, l2, . . . , ln ∈ Σ such that s0 l1−→ s1 ∈
T, s1

l2−→ s2 ∈ T, . . . , sn−1
ln−→ sn ∈ T , l1, l2, . . . , ln 6= δ and there exists a final

transition sn
δ−→ sn+1. The set of final traces of M is written as tδ(M).

Note that the final transition characterized by δ does not occur in the final
traces and that tδ(M) ⊆ t(M). Moreover, if M has no final label then tδ(M) = ∅.

Model checking consists in verifying that an LTS model satisfies a given tem-
poral property ϕ, which specifies some expected requirement of the system. Tem-
poral properties are usually divided into two main families: safety and liveness
properties [2]. In this work, we focus on safety properties, which are widely used
in the verification of real-world systems. Safety properties state that “something
bad never happens”. A safety property is usually formalised using a temporal
logic (we use MCL [16] in Section 4). It can be semantically characterized by an
infinite set of traces tϕ, corresponding to the traces that violate the property ϕ
in an LTS. If the LTS model does not satisfy the property, the model checker
returns a counterexample, which is one of the traces characterised by tϕ.

Definition 4. (Counterexample) Given an LTS M = (S, s0, Σ, T) and a prop-
erty ϕ, a counterexample is any trace which belongs to t(M) ∩ tϕ.

Our solution for counterexample analysis presented in the next section relies
on a state matching algorithm, which takes its foundation into the notion of
preorder simulation between two LTSs [19].

65

www.manaraa.com

Definition 5. (Simulation Relation) Given two LTSs M1 = (S1, s
0
1, Σ1, T1) and

M2 = (S2, s
0
2, Σ2, T2), the simulation relation v between M1 and M2 is the largest

relation in S1×S2 such that s1 v s2 iff ∀s1
l−→ s′1 ∈ T1 there exists s2

l−→ s′2 ∈ T2

such that s′1 v s′2. M1 is simulated by M2 iff s0
1 v s0

2.

3 Counterexample Analysis

In this section, we describe our approach to simplify counterexamples. We first
introduce the procedure to build an LTS containing all counterexamples (coun-
terexample LTS), given a model of the system (full LTS) and a temporal prop-
erty. We then present a technique to match all states of the counterexample
LTS with states of the full LTS. This step allows us to identify transitions at
the frontier between the counterexample and the full LTS. The frontier is the
area where traces, that share a common prefix in the two LTSs, split in different
paths. We define a notion of neighbourhood to extract sets of relevant transitions
at the frontier and a procedure to collect the set of all neighbourhoods. Finally,
by keeping transitions in these neighbourhoods, we are able to provide an ab-
straction of a given counterexample. To sum up, our approach consists of the
four following steps, that we detail in the rest of this section:

1. Counterexample LTS generation
2. States matching
3. States comparison
4. Counterexample abstraction

3.1 Counterexample LTS Generation

The full LTS (MF) is given as input in our approach and is a model representing
all possible executions of a system. Given such an LTS and a safety property,
our goal in this subsection is to generate the LTS containing all counterexamples
(MC).

Definition 6. (Counterexample LTS) Given a full LTS MF = (SF , s
0
F , ΣF , TF),

where δ /∈ ΣF , and a safety property ϕ, a counterexample LTS MC is an LTS
such that tδ(MC) = t(MF)∩ tϕ, i.e., a counterexample LTS is a finite represen-
tation of the set of all traces of the full LTS that violate the property ϕ.

We use the set of final traces tδ(MC) instead of t(MC) since t(MC) is prefix
closed, but prefixes of counterexamples that belongs to t(MC) are not counterex-
amples. Moreover, traces in the counterexample LTS share prefixes with correct
traces in the full LTS. Given a full LTS MF and a safety property ϕ, the pro-
cedure for the generation of the counterexample LTS consists of the following
steps:

1. Conversion of the ϕ formula describing the property into an LTS called
Mϕ, using the technique that allows the encoding of a formula into a graph

66

www.manaraa.com

Fig. 1. Full LTS and counterexample LTS

described in [12]. Mϕ is a finite representation of tϕ, using final transitions,
such that tδ(Mϕ) = tϕ ∩Σ∗F , where ΣF is the set of labels occurring in MF .
In this step, we also apply the subset construction algorithm defined in [1] in
order to determinise Mϕ. We finally reduce the size of Mϕ without changing
its behaviour, performing a minimisation based on strong bisimulation [17].
Those two transformations keep the set of final traces of Mϕ unchanged. The
LTS Mϕ obtained in this way is the minimal one that is deterministic and
accepts all the execution sequences that violates ϕ.

2. Synchronous product between MF and Mϕ with synchronisation on all the
labels of ΣF (thus excluding the final label δ). The result of this product is
an LTS whose final traces belong to t(MF)∩ tδ(Mϕ), thus it contains all the
traces of the LTS MF that violate the formula ϕ. Note that t(MF)∩tδ(Mϕ) =
t(MF) ∩ tϕ, because t(MF) ⊆ Σ∗F and tδ(Mϕ) = tϕ ∩Σ∗F .

3. Pruning of the useless transitions generated during the previous step. In
particular, we use the pruning algorithm proposed in [15] to remove the
traces produced by the synchronous product that are not the prefix of any
final trace.

Proposition: The LTS MC obtained by this procedure is a counterexample LTS
for MF and ϕ.

Let us illustrate this algorithm on the example given in Figure 1. The full
LTS on the left hand side represents a model of a simple protocol that performs
send and receive actions in a loop. The counterexample LTS on the right hand
side is generated with a property ϕ stating that no more than one send action
is allowed. Note that final transitions characterised by the δ label are not made
explicit in the examples.

3.2 States Matching

We now need to match each state belonging to the counterexample LTS with
the states from the full LTS. To do this, we define a matching relation between
each state of the two LTSs, by relying on the simulation relation introduced in

67

www.manaraa.com

Fig. 2. States matching

Section 2. In our context, we want to build such a relation between MC and MF ,
where a state x ∈ SC matches a state y ∈ SF when the first is simulated by the
latter, that is, when x v y. Since the LTS that contains the incorrect behaviours
is extracted from the full LTS, the full LTS always simulates the counterexample
LTS. The algorithm that we have implemented to build the simulation between
MC and MF relies on well-known graph traversal algorithms. More precisely,
it relies on Breadth-First Search (BFS) to explore the graph. The algorithm is
capable of performing backtracking steps in case it cannot match some states
(this may happen due to nondeterministic behaviours present in both LTSs).

Let us consider again the example described in Figure 1. Each state of the
counterexample LTS on the right hand side of the picture matches a state of the
full LTS on the left hand side as shown in Figure 2. Note that multiple states
of the counterexample LTS may correspond to a single state of the full LTS.
In the example of Figure 2, the property ϕ has become unsatisfied after several
iterations of the loop composed of Send and Recv actions, so that loop has been
partially rolled out in the counterexample LTS, resulting in a correspondence of
several states of the counterexample LTS to a single state of the full LTS.

It may also occur that a single state of the counterexample LTS may cor-
respond to multiple states of the full LTS. For instance, the example given in
Figure 3 shows a full LTS and a counterexample LTS produced with a property
that avoids Recv actions after a Send action. Thus, there exists a correspondence
of more than one state of the full LTS with a single state of the counterexample
LTS. In this specific case, the counterexample LTS can be described using a
single trace, since the two states with an exiting Send transition after the Init
transition simulate only one state in the counterexample LTS.

3.3 States Comparison

The result of the matching algorithm is then analysed in order to compare tran-
sitions outgoing from similar states in both LTSs. This comparison aims at iden-
tifying transitions that originate from matched states, and that appear in the
full LTS but not in the counterexample LTS. We call this kind of transition a
correct transition.

68

www.manaraa.com

Fig. 3. Multiple matching

Definition 7. (Correct Transition) Given an LTS MF = (SF , s
0
F , ΣF , TF), a

property ϕ, the counterexample LTS MC = (SC , s
0
C , ΣC , TC) obtained from MF

and ϕ, and given two states s ∈ SF and s′ ∈ SC , such that s′ v s, we call a

transition s
l−→ s′′ ∈ TF a correct transition if there is no transition s′

l−→ s′′′ ∈ TC
such that s′′′ v s′′.

A correct transition is preceded by incoming transitions that are common to
the correct and incorrect behaviours. We call these transitions relevant predeces-
sors. Correct transitions allow us to introduce the notion of frontier. The frontier
is a set of states at the border between the counterexample LTS and the rest of
the full LTS, where for two matched states, there exists a correct transition in
the full LTS.

Definition 8. (Frontier) Given an LTS MF = (SF , s
0
F , ΣF , TF), a property ϕ,

the counterexample LTS MC = (SC , s
0
C , ΣC , TC) obtained from MF and ϕ, the

frontier is the set of states Sfr ⊆ SF such that for each s ∈ Sfr , there exists

s′ ∈ SC , such that s′ v s and there exists a correct transition s
l−→ s′′ ∈ TF .

A given state in the frontier allows us in a second step to identify a neighbour-
hood in the corresponding counterexample LTS, which consists of all incoming
and outgoing transitions of that state.

Definition 9. (Neighbourhood) Given an LTS MF = (SF , s
0
F , ΣF , TF), a prop-

erty ϕ, the counterexample LTS MC = (SC , s
0
C , ΣC , TC), two states s ∈ Sfr

and s′ ∈ SC such that s′ v s, the neighbourhood of state s′ is the set of tran-

sitions Tnb ⊆ TC such that for each t ∈ Tnb, either t = s′′
l−→ s′ ∈ TC or

t = s′
l−→ s′′ ∈ TC .

Let us illustrate these notions on an example. Figure 4 shows a piece of a
full LTS and the corresponding counterexample LTS. The full LTS on the left
hand side of the figure represents a state that is at the frontier, thus it has been
matched by a state of the counterexample LTS on the right hand side and it has
correct transitions outgoing from it. The incoming and outgoing transitions for
this state in the counterexample LTS correspond to the neighbourhood.

69

www.manaraa.com

Fig. 4. Example of neighbourhood

3.4 Counterexample Abstraction

The final goal is to abstract a counterexample of the model in order to highlight
the source of the bug and thus favour the comprehension of its cause. Given the
counterexample LTS MC , produced from a model MF and a property ϕ, where
neighbourhoods have been identified in the previous subsection, and a coun-
terexample ce, produced from MF and ϕ, the procedure for the counterexample
abstraction consists of the following steps:

1. Matching between states of ce with states of MC .
2. Identification of states in ce that are matched to states in MC , which belong

to a neighbourhood.
3. Suppression of actions in ce, which do not represent incoming or outgoing

transitions of a neighbourhood.

For illustration purposes, let us consider the counterexample, produced by
a model checker from a model M and a property ϕ, given on the top side of
Figure 5. Once the set of neighbourhoods in the counterexample LTS is computed
using M and ϕ, we are able to locate sub-sequences of actions corresponding to
transitions in the neighbourhoods. We finally remove all the remaining actions
to obtain the simplified counterexample shown on the bottom side of the figure.
We will comment on the relevance and benefit of these results on real-world
examples in the next section.

4 Tool Support

In this section, we successively present the implementation of our approach,
illustrate it on a case study, and present experimental results on examples found
in the literature.

4.1 Implementation

Our tool is depicted in Fig. 6 and consists of two main parts. The first one imple-
ments the counterexample LTS generation step described in Section 3.1. It relies

70

www.manaraa.com

Fig. 5. Counterexample abstraction

on the CADP toolbox [11], which enables one to specify and analyse concur-
rent systems using model and equivalence checking techniques. We particularly
make use of the LNT value passing process algebra [7] for specifying systems,
of the BCG binary format for representing LTSs, and of the MCL mu-calculus
logic [16] for describing safety temporal properties. The LNT specification is
automatically transformed into an LTS model in BCG format (the full LTS in
Section 3) using CADP compilers. The CADP model checker (Evaluator [16])
takes as input an MCL property and an input specification/model (LNT or
LTS), and returns a verdict (true or false + a counterexample if the property is
violated). The computation of the counterexample LTS is achieved by a script
we wrote using SVL [10], a scripting language that allows one to interface with
tools provided in the CADP toolbox. This script calls several tools: a specific
option of Evaluator for building an LTS from a formula following the algorithm
in [12]; EXP.OPEN for building LTS products; Reductor for minimizing LTSs;
Scrutator [15] for removing spurious traces in LTSs.

Fig. 6. Overview of the tool support

71

www.manaraa.com

The second part of our tool implements the algorithms for state matching (2),
state comparison (3) and counterexample abstraction (4), described from Sec-
tion 3.2 to Section 3.4. This part of the tool has been implemented in Java and
consists of about 2,500 lines of code. The tool takes as input the files contain-
ing the full and the counterexample LTS, converted into an intermediate ASCII
format called AUT (provided by CADP), and stores them in memory using a
Java graph modelling library. The matching step (2) is based on a BFS graph
search algorithm in order to build the simulation relation between the two LTSs.
The state matching is then stored into a map, used by the state comparison
step (3) to analyse outgoing transitions for each association of states between
the two LTSs. This allows us to retrieve the set of neighbourhoods. Finally, the
counterexample abstraction step (4) first produces the shortest counterexample
from the full LTS and the property by using the Evaluator model checker, and
second performs the counterexample reduction by locating and keeping actions
that correspond to neighbourhoods. The result retrieved by our tool consists of
the shortest counterexample abstracted in the form of a list of sub-sequences of
actions, accompanied by the list of all neighbourhoods.

4.2 Case Study

We now describe an example taken from a real-world case study [20]. The exam-
ple models a sanitary agency that aims at supporting elderly citizens in receiving
sanitary agency assistance from the public administration. The model involves
four different participants: (i) a citizen who requests services such as transporta-
tion or meal; the request can be accepted or refused by the agency; (ii) a sanitary
agency that manages citizens’ requests and provides public fee payment; (iii) a
bank that manages fees and performs payments; (iv) a cooperative that receives
requests from the sanitary agency, receives payments from the bank, and pro-
vides transportations and meal services. Figure 7 gives the LTS model for each
participant. We assume in this example that the participants interact together
asynchronously by exchanging messages via FIFO buffers.

For illustration purposes, we use an MCL safety property, which indicates
that the payment of a transportation service to the transportation cooperative
cannot occur after submission of a request by a citizen to the sanitary agency:

[true* . ’REQUEST EM’ . true* . ’PAYMENTT EM’ . true*] false

We applied our tool to the sanitary agency model with the aforementioned
property. Our tool was able to identify seven neighbourhoods in the couterex-
ample LTS. The shortest counterexample involves three neighbourhoods, and
this allows us to reduce its size from 19 actions to only 6 actions. Figure 8
shows (from left to right) the full LTS of the sanitary agency model, the short-
est counterexample, and the three neighbourhoods (+ correct transitions) for
this counterexample. The neighbourhoods and corresponding extracted actions
are relevant in the sense that they precisely identify choices that lead to the
incorrect behaviour. In particular, they identify the two causes of the property

72

www.manaraa.com

Fig. 7. LTS models for the sanitary agency

violation and those causes can be observed on the shortest counterexample. The
first cause of violation is emphasized by the first neighbourhood and occurs when
the citizen request is accepted. In that case, the refusal of the request is a correct
transition and leads to a part of the LTS where the property is not violated. In-
deed, when a citizen request is refused by the sanitary agency, the execution skips
the part of the system behaviour where the transportation service and payment
appear. The two next neighbourhoods pinpoint the second reason of property
violation. They show that actions RECMONEYPOST EM and PROVT EM have
been performed, which correspond to triggering the request for payment of the
transportation service, that is not permitted by the property.

Our solution thus allows the developer to identify the cause of the property
violation by identifying specific actions in counterexamples via the notion of
neighbourhood. It is worth stressing that, since our approach applies on the
counterexample LTS and computes all the neighbourhoods, the returned solution
is able to pinpoint all the causes of the property violation, as we have shown
with the example above.

4.3 Experimental Results

We carried out experiments on about 20 real-world examples found in the liter-
ature. For each example, we use as input an LNT specification or an LTS model
as well as a safety property. Table 1 summarizes the results for some of these ex-
periments. The first two columns contain the name of the model, the reference
to the corresponding article, and the property. The third and fourth columns
show the size of the full and the counterexample LTSs, respectively, in terms of

73

www.manaraa.com

Fig. 8. Sanitary agency: full LTS and shortest counterexample

number of states, transitions and labels. The following columns give the number
of identified neighbourhoods, the size of the shortest (retrieved with breadth
first search techniques) and of the abstracted counterexample, respectively. Fi-
nally, the last two columns detail the execution time for the counterexample LTS
production, and for the matching and comparison algorithms (in seconds).

Example ϕ LF (s/t/l) LC (s/t/l) |N | |Ce| |Cer| tLF
tN

sanitary agency [20] ϕsa1 227 / 492 / 31 226 / 485 / 31 6 17 2 6.3s 0.3s
sanitary agency [20] ϕsa2 142 / 291 / 31 492 / 943 / 31 18 64 6 5.7s 0.2s
ssh protocol [14] ϕsp1 23 / 25 / 23 20 / 20 / 19 2 14 3 4.9s 0.2s
ssh protocol [14] ϕsp2 23 / 25 / 23 35 / 35 / 19 4 29 7 4.8s 0.1s
client supplier [6] ϕcs1 35 / 45 / 26 29 / 33 / 24 3 18 5 4.6s 0.1s
client supplier [6] ϕcs2 35 / 45 / 26 25 / 25 / 24 4 19 6 4.9s 0.1s
client supplier [6] ϕcs3 35 / 46 / 26 33 / 41 / 24 2 15 2 4.8s 0.2s
train station [21] ϕts 39 / 66 / 18 26 / 34 / 18 1 6 2 5.2s 0.2s
selfconfig [22] ϕac 314 / 810 / 27 159 / 355 / 27 30 14 5 5.6s 0.3s
online stock broker [9] ϕosb 1331 / 2770 / 13 2653 / 5562 / 13 61 23 23 4.9s 0.7s

Table 1. Experimental results

First of all, we can see a clear gain in length between the original coun-
terexample and the abstracted one, which keeps only relevant actions using our
approach. There is one case (online stock broker, last row) in which our solution
was not able to reduce the counterexample. This may occur in specific cases
when the counterexample (the shortest here) does not exhibit any correct tran-

74

www.manaraa.com

sitions. In that particular situation, our abstraction techniques cannot help the
developer in the identification of the cause of the property violation.

As far as computation time is concerned, the table shows that, for these
examples, the time for producing counterexample LTSs is slightly longer than
the time for computing the matching/comparison algorithms, which is very low
(less than a second). The script for counterexample LTS computation is longer
because it calls several CADP tools in sequence, which takes time.

5 Related Work

In this section, we survey related papers providing techniques for supporting
the debugging of specifications and programs. LocFaults [5] is a flow-driven and
constraint-based approach for error localization. It takes as input a faulty pro-
gram for which a counterexample and a postcondition are provided. This ap-
proach makes use of constraint based bounded model checking combined with
a minimal correction set notion to locate errors in the faulty program. This
work focuses on programs with numerical statements and relies on a constraint
programming framework allowing the combination of Boolean and numerical
constraints. In addition, the authors do not explicitly describe the capacity of
their solution for analysing concurrent programs.

Concurrency is explicitly taken into account in [3, 4]. In [3], the authors choose
the Halpern and Pearl model to define causality checking. In particular, they
analyse traces of counterexamples generated by bounded model checking to lo-
calise errors in hardware systems. In [4], sequential pattern mining is applied to
execution traces for revealing unforeseen interleavings that may be a source of
error, through the adoption of the well-known mining algorithm CloSpan [24].
This work deals with various typical issues in the analysis of concurrent models,
for instance the problem of increasing length of traces and the introduction of
spurious patterns when abstraction methods are used. CloSpan is also adopted
in [13], where the authors applied sequential pattern mining to traces of coun-
terexamples generated from a model using the SPIN model checker. By doing
so, they are able to reveal unforeseen interleavings that may be a source of er-
ror. The approach presented in [13] is able to analyse concurrent systems and
to extract sequences of events for identifying bugs, thus representing one of the
closest results to our work. Reasoning on traces as achieved in [3, 4, 13] induces
several issues. The handling of looping behaviours is non-trivial and may result
in the generation of infinite traces or of an infinite number of traces. Coverage is
another problem, since a high number of traces does not guarantee to produce all
the relevant behaviours for analysis purposes. As a result, we decided to work
on the debugging of LTS models, which represent in a finite way all possible
behaviours of the system.

Another solution for localization of faults in failing programs consists in us-
ing testing techniques. As an example, [18] presents a mutation-based fault lo-
calization approach and suggests the use of a sufficient mutant set to locate
effectively the faulty statements. This mutation analysis approach applies on

75

www.manaraa.com

C programs under validation using testing techniques whereas we focus on for-
mal specifications and models being analysed using model checking techniques.
In [23], the authors propose a new approach for debugging value-passing process
algebra through coverage analysis. The authors define several coverage notions
before showing how to instrument the specification without affecting original
behaviours. This approach helps one to find errors such as ill-formed decisions
or dead code, but does not help to understand why a property is violated during
analysis using model checking techniques.

6 Conclusion

In this paper, we have proposed a new method for debugging concurrent sys-
tems based on the analysis of counterexamples produced by model checking
techniques. First, we have defined a procedure to obtain an LTS containing all
the counterexamples given a full LTS and a safety property. Second, we have
introduced the notion of neighbourhoods corresponding to the junction of cor-
rect and erroneous transitions in the LTS, as well as an algorithm for computing
them by comparing the full LTS and the LTS consisting of all counterexamples.
Finally, we have implemented our approach as a tool and evaluated it on real-
world case studies, showing the advantage of the counterexample abstraction in
practice when adopting the neighbourhood approach.

As far as future improvements are concerned, a first perspective of this work
is to extend our approach to focus on probabilistic specifications and models,
and refine our LTS analysis techniques for handling those models. Another per-
spective is to increase the scope of system requirements that we can take into
account. Indeed, although safety properties already allow us to define most re-
quirements for real-world systems, we would like to consider liveness properties
as well. Finally, we plan to investigate the introduction of code colouring in the
specification by highlighting code portions that correspond to the source of the
problem according to our approach.

Acknowledgements. We would like to thank Frédéric Lang and Radu Ma-
teescu for their valuable suggestions to improve the paper.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

2. C. Baier and J. Katoen. Principles of Model Checking. MIT Press, 2008.
3. A. Beer, S. Heidinger, U. Kühne, F. Leitner-Fischer, and S. Leue. Symbolic Causal-

ity Checking Using Bounded Model Checking. In Proc. of SPIN’15, volume 9232
of LNCS. Springer, 2015.

4. M. T. Befrouei, C. Wang, and G. Weissenbacher. Abstraction and Mining of Traces
to Explain Concurrency Bugs. In Proc. of RV’14, volume 8734 of LNCS. Springer,
2014.

76

www.manaraa.com

5. M. Bekkouche, H. Collavizza, and M. Rueher. LocFaults: A New Flow-driven and
Constraint-based Error Localization Approach. In Proc. of SAC’15. ACM, 2015.

6. J. Cámara, J. A. Mart́ın, G. Salaün, C. Canal, and E. Pimentel. Semi-Automatic
Specification of Behavioural Service Adaptation Contracts. Electr. Notes Theor.
Comput. Sci., 264(1):19–34, 2010.

7. D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, F. Lang, C. McKinty,
V. Powazny, W. Serwe, and G. Smeding. Reference Manual of the LOTOS NT to
LOTOS Translator (Version 6.1). INRIA/VASY, 131 pages, 2014.

8. E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press, 2001.
9. X. Fu, T. Bultan, and J. Su. Conversation Protocols: A Formalism for Specification

and Verification of Reactive Electronic Services. Theoretical Computer Science,
328(1-2):19–37, 2004.

10. H. Garavel and F. Lang. SVL: A Scripting Language for Compositional Verifica-
tion. In Proc. of FORTE’01, volume 197 of IFIP Conference Proceedings. Kluwer,
2001.

11. H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2011: A Toolbox for the
Construction and Analysis of Distributed Processes. STTT, 15(2):89–107, 2013.

12. F. Lang and R. Mateescu. Partial Model Checking using Networks of Labelled
Transition Systems and Boole an Equation Systems. Logical Methods in Computer
Science, 9(4), 2013.

13. S. Leue and M. T. Befrouei. Mining Sequential Patterns to Explain Concurrent
Counterexamples. In Proc. of SPIN’13, volume 7976 of LNCS. Springer, 2013.

14. J. A. Mart́ın and E. Pimentel. Contracts for Security Adaptation. J. Log. Algebr.
Program., 80(3-5), 2011.

15. R. Mateescu, P. Poizat, and G. Salaün. Adaptation of Service Protocols Using
Process Algebra and On-the-Fly Reduction Techniques. IEEE Trans. Software
Eng., 38(4):755–777, 2012.

16. R. Mateescu and D. Thivolle. A Model Checking Language for Concurrent Value-
Passing Systems. In Proc. of FM’08, volume 5014 of LNCS. Springer, 2008.

17. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
18. M. Papadakis and Y. L. Traon. Effective Fault Localization via Mutation Analysis:

A Selective Mutation Approach. In Proc. of SAC’14. ACM, 2014.
19. D. M. R. Park. Concurrency and Automata on Infinite Sequences. In Proc. of

the 5th Theoretical Computer Science Conference, volume 104 of LNCS. Springer,
1981.

20. G. Salaün, L. Bordeaux, and M. Schaerf. Describing and Reasoning on Web Ser-
vices using Process Algebra. In Proc. of ICWS’04. IEEE Computer Society, 2004.

21. G. Salaün, T. Bultan, and N. Roohi. Realizability of Choreographies Using Pro-
cess Algebra Encodings. IEEE Transactions on Services Computing, 5(3):290–304,
2012.

22. G. Salaün, X. Etchevers, N. D. Palma, F. Boyer, and T. Coupaye. Verification
of a Self-configuration Protocol for Distributed Applications in the Cloud. In
Assurances for Self-Adaptive Systems, pages 60–79. Springer, 2013.

23. G. Salaün and L. Ye. Debugging Process Algebra Specifications. In Proc. of
VMCAI’15, volume 8931 of LNCS. Springer, 2015.

24. X. Yan, J. Han, and R. Afshar. CloSpan: Mining Closed Sequential Patterns in
Large Databases. In Proc. of SDM’03. SIAM, 2003.

77

www.manaraa.com

Synthesizing Parameterized Self-Stabilizing
Rings With Constant-Space Processes

Alex Klinkhamer1 and Ali Ebnenasir2

1 Google
Mountain View, CA 94043, U.S.A.

apklinkh@mtu.edu

2 Department of Computer Science
Michigan Technological University

Houghton MI 49931, U.S.A.
aebnenas@mtu.edu

Abstract. This paper investigates the problem of synthesizing parame-
terized rings that are “self-stabilizing by construction”. While it is known
that the verification of self-stabilization for parameterized unidirectional
rings is undecidable, we present a counterintuitive result that synthe-
sizing such systems is decidable! This is surprising because it is known
that, in general, the synthesis of distributed systems is harder than their
verification. We also show that synthesizing self-stabilizing bidirectional
rings is an undecidable problem. To prove the decidability of synthesis
for unidirectional rings, we propose a sound and complete algorithm that
performs the synthesis in the local state space of processes. We also gen-
erate strongly stabilizing rings where no fairness assumption is made.
This is particularly noteworthy because most existing verification and
synthesis methods for parameterized systems assume a fair scheduler.

1 Introduction

Developing parameterized Self-Stabilizing (SS) distributed systems is an impor-
tant and challenging problem since a parameterized SS system must be self-
stabilizing regardless of the number of processes. An SS system (i) recovers from
any configuration/state to a set of legitimate states – that captures the normal
behaviors of a system, and (ii) guarantees global recovery to legitimate states
solely based on the local actions of its processes (without any central point of
coordination). Designing self-stabilization becomes even more challenging for
parameterized systems that include families of symmetric processes, where the
code of each process is obtained from a template process in a symmetric network.
Since the general case synthesis problem is undecidable, several researchers have
recently proposed methods where they generate specific parameterized systems
from their temporal logic specifications, mainly by exploiting verification tech-
niques (e.g., cutoff theorems [13]) and boundedness assumptions [16]. As the

78

www.manaraa.com

verification of SS parameterized unidirectional rings is known to be undecidable
[22], the common understanding has been that synthesizing such systems should
also be undecidable. In this paper, we prove otherwise! We show that synthe-
sizing SS is actually decidable for parameterized unidirectional rings where all
processes follow the same synthesized rules.

Numerous approaches exist for the synthesis of parameterized systems, most
of which focus on synthesis from temporal logic specifications while assuming
some sort of fairness. For example, Finkbeiner and Schewe [16] present a method
where they solve the synthesis problem in a scope-based fashion similar to the
scope-based verification methods [19]. They formulate the synthesis problem
as a set of constraints that are fed to a Satisfiability Modulo Theory (SMT)
solver [9]. Jacobs and Bloem [20] reduce the problem of synthesizing parame-
terized systems to synthesizing a small network of symmetric processes under
the assumption of fair token passing. They exploit bounded synthesis and cutoff
theorems to enable a semi-decision procedure that will eventually find a solu-
tion if one exists. Additionally, some researchers have investigated the synthe-
sis of parameterized self-stabilizing systems in a problem-specific context. For
instance, Bloem et al. [6] provide a method for the synthesis of synchronous
systems that are SS and tolerate Byzantine failures and their underlying com-
munication topology is a clique. Dolev et al. [11] present a verification-based
method to generate synchronous and constant-space counting algorithms that
are self-stabilizing under Byzantine faults. Lenzen and Rybicki [25] provide an
SS and Byzantine-tolerant solution for the counting problem with near-optimal
stabilization time and message sizes. What the aforementioned methods have in
common is that they synthesize from temporal logic specifications and/or make
assumptions about synchrony, fairness and complete knowledge of the network
for each process. Moreover, some of them investigate specific problems.

In addition to proving some undecidability results for bidirectional rings, this
paper presents an algorithmic method for the synthesis of symmetric unidirec-
tional rings that are self-stabilizing by construction. The proposed algorithm
works in a graph-theoretic context rather than synthesis from temporal logic
specifications. In our work, we consider processes that are deterministic, self-
disabling and constant-space, where a self-disabling process stops executing once
it executes an action until it is enabled again by an action of its predecessor.3

Moreover, we investigate this problem for sets of legitimate states that can be
specified as the conjunction of local legitimate states. While our assumptions
may seem restrictive, there are important applications for such systems [28,18].
The decidability result of this paper is counterintuitive as in our previous work
[22] we have shown that verifying self-stabilization for unidirectional rings is
undecidable. This is surprising because it is known [26] that, in general, the syn-
thesis of distributed systems is harder than their verification. We first present a
necessary and sufficient condition for the existence of a symmetric SS unidirec-
tional ring. Our necessary and sufficient condition states that an SS symmetric
unidirectional ring exists if and only if (iff) there is a value in the state space of

3 We have shown [23] that these assumptions uphold the completeness of synthesis.

79

www.manaraa.com

the template process that can make the locality of each process true. We then
use this result and design a sound and complete algorithm. The input to our
algorithm includes a set of legitimate states and the size of the state space of
the template process. The output of the proposed algorithm is the symmetric
code of the template process so that the entire ring becomes self-stabilizing for
any arbitrary (but finite) number of processes. Our approach is easier than syn-
thesis from temporal logic specifications in that we perform the synthesis in a
bottom-up fashion by intelligently searching the state space of the template pro-
cess. Subsequently, we investigate the synthesis of bidirectional symmetric rings
that are self-stabilizing, and show that this problem is undecidable. Our proof of
undecidability is a reduction from the problem of verifying self-stabilization for
unidirectional rings [22]. While we have used our algorithm to synthesize a few
example systems in this paper, we are currently investigating the generalization
of our algorithm for other topologies and more interesting case studies.
Contributions. This paper makes the following contributions. We

– present a surprising result that synthesizing parameterized SS unidirectional
rings under the interleaving semantics and no fairness assumption is decid-
able;

– provide an algorithm that takes a set of legitimate states and the size of the
state space of the template process, and automatically generates the code of
the template process, and

– prove that synthesizing SS bidirectional rings is undecidable.

Organization. Section 2 presents some basic concepts. Section 3 shows that
synthesizing SS unidirectional rings is decidable. Section 4 investigates the syn-
thesis of SS bidirectional rings and proves that this problem is undecidable.
Section 5 examines related work. Finally, Section 6 makes concluding remarks
and discusses future extensions of this work.

2 Basic Concepts

This section presents the definition of parameterized rings, their representation
as action graphs, and self-stabilization. Wlog, we use the term protocol to refer
to parameterized rings as we conduct our investigation in the context of network
protocols. A protocol p for a computer network includes N > 1 processes (finite-
state machines), where each process Pi has a finite set of readable and writeable
variables. Any local state of a process (a.k.a. locality/neighborhood) is determined
by a unique valuation of its readable variables. We assume that any writeable
variable is also readable. The global state of the protocol is defined by a snapshot
of the local states of all processes. The state space of a protocol, denoted by Σ,
is the universal set of all global states. A state predicate is a subset of Σ. A
process acts (i.e., transitions) when it atomically updates its state based on its
locality. The locality of a process is defined by the network topology. In this
paper, our focus is on the ring topology. For example, in a unidirectional ring
consisting of N processes, each process Pi (where i ∈ ZN , i.e., 0 ≤ i ≤ N − 1)

80

www.manaraa.com

has a neighbor Pi−1, where subtraction and addition are in modulo N . We
assume that processes act one at a time (i.e., interleaving semantics). Thus,
each global transition corresponds to the action of a single process from some
global state. An execution/computation of a protocol is a sequence of states
C0, C1, . . . , Ck where there is a transition from Ci to Ci+1 for every i ∈ Zk. We
consider symmetric protocols, where processes have identical rules for changing
their state and the rules are parameterized. That is, the code of each process
can be instantiated from a template process. We use triples of the form (a, b, c)
to denote actions (xi−1 = a ∧ xi = b −→ xi := c;) of the template process
Pi in a unidirectional ring protocol. An action has two components; a guard,
which is a Boolean expression in terms of readable variables and a statement
that atomically updates the state of the process once the guard evaluates to
true; i.e., the action is enabled.

Definition 1 (Transition Function). Let Pi be any process with a state vari-
able xi in a unidirectional ring protocol p. We define its transition function
ξ : Σ × Σ → Σ as a partial function such that ξ(a, b) = c if and only if Pi has
an action (xi−1 = a ∧ xi = b −→ xi := c;). In other words, ξ can be used to
define all actions of Pi in the form of a single parametric action:

((xi−1, xi) ∈ Pre(ξ)) −→ xi := ξ(xi−1, xi);

where (xi−1, xi) ∈ Pre(ξ) checks to see if the current xi−1 and xi values are in
the preimage of ξ.

Visually, we depict the actions of a process (hence a protocol) by a labeled
directed multigraph, called the action graph, where each action (a, b, c) in the
protocol appears as an arc from node a to node c labeled b in the graph. For
example, consider the self-stabilizing Sum-Not-2 protocol given in [15]. Each
process Pi has a variable xi ∈ Z3 and actions (xi−1 = 0 ∧ xi = 2 −→ xi := 1),
(xi−1 = 1 ∧ xi = 1 −→ xi := 2), and (xi−1 = 2 ∧ xi = 0 −→ xi := 1). This
protocol converges to a state where the sum of each two consecutive x values
does not equal 2. The set of such states is formally specified as the state predicate
∀i : (xi−1 + xi 6= 2). We represent this protocol with a graph containing arcs
(0, 2, 1), (1, 1, 2), and (2, 0, 1) as shown in Figure 1.

Since protocols consist of self-disabling

0 1 2
2

1

0

Fig. 1: Graph representing Sum-
Not-2 protocol.

processes, an action (a, b, c) cannot coex-
ist with action (a, c, d) for any d. Moreover,
when the protocol is deterministic, a process
cannot have two actions enabled at the same
time; i.e., an action (a, b, c) cannot coexist
with an action (a, b, d) where d 6= c.

Livelock, deadlock, and closure. A legitimate state captures a state to which
a protocol is required to recover. Let I be a predicate representing the legitimate
states for some protocol p. A livelock of p is an infinite execution that never
reaches I. When legitimate states are not specified, we assume a livelock is any
infinite execution. A deadlock of p is a state in ¬I that has no outgoing transition;

81

www.manaraa.com

i.e., no process is enabled to act. The state predicate I is closed under p when
no transition exists that brings the protocol from a state in I to a state in ¬I.

Definition 2 (Self-Stabilization). A protocol p is self-stabilizing [10] with re-
spect to its legitimate state predicate I iff from each illegitimate state in ¬I, all
executions reach a state in I (i.e., convergence) and remain in I (i.e., closure).
That is, p is livelock-free and deadlock-free in ¬I, and I is closed under p.

Definition 3 (Weak Stabilization). A weakly stabilizing protocol ensures that
from each illegitimate state in ¬I, there is some execution that reaches a state
in I (i.e., reachability) and remains in I.

Next, we represent some of our previous result that we shall use in this paper.
Propagations and Collisions. When a process acts and enables its suc-
cessor in a unidirectional ring, it propagates its ability to act. The successor
may enable its own successor by acting, and the pattern may continue indef-
initely. Such behaviors can be represented as sequences of actions that are
propagated in a ring, called propagations. A propagation is a walk through
the action graph. For example, the Sum-Not-2 protocol has a propagation
〈(0, 2, 1), (1, 1, 2), (2, 0, 1), (1, 1, 2)〉 whose actions can be executed in order by
processes Pi, Pi+1, Pi+2, and Pi+3 from a state (xi−1, xi, xi+1, xi+2, xi+3) = (0,
2, 1, 0, 1). A propagation is periodic with period n iff its j-th action and (j+n)-th
action are the same for every index j. A periodic propagation corresponds to a
closed walk of length n in the graph. The Sum-Not-2 protocol has such a prop-
agation of period 2: 〈(1, 1, 2), (2, 0, 1)〉. A collision occurs when two consecutive
processes, say Pi and Pi+1, have enabled actions; e.g., (a, b, c) and (b, e, f), where
b 6= c. In such a scenario, xi−1=a, xi=b, xi+1=e. A collision occurs when Pi ex-
ecutes and assigns c to xi. If that occurs, Pi will be disabled (because processes
are self-disabling), and Pi+1 becomes disabled too because xi is no longer equal
to b. As a result, two enabled processes become disabled by one action.
“Leads” Relation. Consider two actions A1 and A2 in a process Pi. We say
the action A1 leads A2 iff the value of the variable xi after executing A1 is the
same as the value required for Pi to execute A2. Formally, this means an action
(a, b, c) leads (d, e, f) iff e = c. Similarly, a propagation leads another iff for
every index j, its j-th action leads the j-th action of the other propagation. In
the action graph, this corresponds to two walks where the label of the destination
node of the j-th arc in the first walk matches the arc label of the j-th arc in the
second walk (for each index j). In [22], we prove the following theorem:

Theorem 1. A unidirectional ring protocol of symmetric, self-disabling pro-
cesses has a livelock for some ring size iff there exist some m propagations with
some period n, where the (i−1)-th propagation leads the i-th propagation for each
index i modulo m; i.e., the propagations successively lead each other modulo m.

Undecidability of Verification. We have shown [15] that verifying deadlock-
freedom in unidirectional rings is decidable. However, checking livelock-freedom
is an undecidable problem (specifically Π0

1 -complete) for unidirectional ring pro-
tocols (with self-disabling and deterministic processes) [22]. The following results

82

www.manaraa.com

hold for cases where the set of legitimate states I is a conjunctive predicate; i.e.,
I = ∀i : L(xi−1, xi), where L(xi−1, xi) captures the locality of process Pi, which
depends on its own state and that of its predecessor. Varghese [28,29] presents
methods for specifying some global state predicates as conjunctive predicates.

Theorem 2. Verifying livelock-freedom in a parameterized unidirectional ring
protocol (with self-disabling and deterministic processes) is undecidable [22].

We have also shown that verifying livelock-freedom remains undecidable even
for a special type of livelocks, where exactly one process is enabled to execute
in every state of the livelocked computation; i.e., deterministic livelocks [22].

Theorem 3. Verifying livelock-freedom in a parameterized unidirectional ring
protocol (with self-disabling and deterministic processes) remains undecidable
even for deterministic livelocks [22].

The above results imply the undecidability of verifying self-stabilization for
parameterized unidirectional rings.

Theorem 4. Verifying self-stabilization for a parameterized unidirectional ring
protocol (with self-disabling and deterministic processes) is undecidable [22].

3 Decidability of Synthesizing Unidirectional Rings

In this section, we show that synthesizing SS unidirectional rings is decidable.

Theorem 5. Given a predicate I
def
= (∀i : L(xi−1, xi)) and variable domain M

for a unidirectional ring, L(γ, γ) is true for some γ if and only if there exists a
protocol that stabilizes to I.

Proof. ⇒: Assume that no γ exists such that L(γ, γ) is true. This implies that
∀i : xi−1 6= xi in I. In this case, a stabilizing protocol would be a coloring
protocol, which Bernard et al. [5] have shown is impossible for a unidirectional
ring of size greater than M . (If the ring has at most M processes, then assigning
unique values modulo M will provide a coloring.) This means if we check the
entire domain ZM and find no value that makes L true, then using Bernard et
al.’s result we can decide that no solution exists. That is, the problem is decidable
when L(γ, γ) is false for all γ ∈ ZM . We are left to show how to construct a
stabilizing protocol p when some γ can make L(γ, γ) true. One could argue that
a stabilizing protocol could contain just an action ¬L(xi−1, xi) → xi := γ, but
this protocol is just weakly stabilizing.
Find a γ such that L(γ, γ) is true. Assuming such a γ exists, it is trivial
to find it by trying each value in ZM . Intuitively, we will make the stabilizing
protocol p converge to (∀i : xi = γ) unless it reaches some other state that

satisfies I. Figure 2 provides a running example where L(xi−1, xi)
def
= ((x2i−1 +

x3i) mod 7 = 3) and variables have domain size M = 7. We arbitrarily choose
γ = 5 (instead of γ = 4) to satisfy L(γ, γ); i.e., the solution is not unique.

83

www.manaraa.com

4 2 6

531

0 Legend

In L and L′

In L

(a) Predicates L and L′ as Digraphs (i.e., G and G′)

4 2 6

531

0 Legend

0–4|6

0–2|4|6
0|3|5|6 0–

4|60–4|6
0|3|5|6

0–2|4|6

a|b
a–b

Match a or b

In {a, . . . , b}

(b) Stabilizing Protocol p as a Digraph

Fig. 2: Synthesis of stabilization to ∀i : L(xi−1, xi), where

L(xi−1, xi)
def
=

(
(x2i−1+x3i) mod 7 = 3

)
and xi∈Z7.

Construct relation L′ from arcs that form cycles in the digraph of
L. The relation L can be represented as a digraph such that each arc (a, b)
is in the graph iff L(a, b) is true. Let G be this digraph (e.g., formed by both
solid and dashed lines in Figure 2a). Closed walks in G characterize all states
in (∀i : L(xi−1, xi)) [15]. Derive a digraph G′ (and corresponding relation L′)
from G by removing all arcs that are not part of a cycle (e.g., arcs (4, 1), (3, 1),
(2, 6), and (5, 6) in Figure 2a). Since closed walks of G characterize states in I,
we know that for every arc (a, b) in G that is not part of a cycle, no legitimate
state contains xi−1=a ∧ xi=b at any index i. All closed walks of G are retained

by G′, which means I
def
= (∀i : L′(xi−1, xi)).

Construct a bottom-up spanning tree τ with γ at the root. Let τ be
a function that returns the parent of a node in a tree; i.e, τ(a) = c means that

c is the parent of a. First, let τ(γ)
def
= γ represent the root of the tree. Next,

create a tree by backward reachability from γ in G′, and assign τ(a)
def
= c for

each a that has a path a, c, . . . , γ in G′. Finally, let τ(a)
def
= γ for each node a

that has no path to γ in G′. These extra arcs of τ create no cycles. Since all arcs
of G′ are involved in cycles, any walk in G′ can find its way back to a previously
visited node. Therefore, if a node cannot reach γ in G′, then γ cannot reach that
node. Since the extra arcs of τ would not introduce cycles in G′, we know that
(∀i : (L′(xi−1, xi) ∨ τ(xi−1)=xi)) is yet another equivalent way to write I.

Construct each action (a, b, c) of p by labeling each arc (a, c) of τ with
all b values such that (¬L′(a, b)∧τ(a) 6=b). In this way, τ defines how a process
Pi in p will assign xi when it detects an illegitimate state. Figure 2b illustrates
the solution protocol for our example, as well as τ if we ignore the arc labels.
The protocol p is written succinctly by the following action for each process Pi.

¬L′(xi−1, xi) ∧ τ(xi−1)6=xi −→ xi := τ(xi−1);

84

www.manaraa.com

This protocol p stabilizes to I. Deadlock-freedom in ¬I and closure of I
hold because each process Pi is enabled to act iff (¬L′(xi−1, xi) ∧ τ(xi−1)6=xi)
holds. Livelock-freedom holds because all periodic propagations of p consist of
actions of the form (γ, b, γ) where L(γ, b) is false (e.g., the self-loops of Node 5 in
Figure 2b). Obviously none of these (γ, b, γ) actions lead each other since b 6= γ;
i.e., no periodic propagations exist. Thus, based on Section 1, no livelocks exist
in ¬I for any ring size greater than M . Therefore, the protocol p stabilizes to I
for any number of processes.
Proof ⇐: Let p be a protocol p that stabilizes to I for all ring sizes. Thus, closure
of I in p, deadlock-freedom and livelock-freedom of p in ¬I must hold. Since
processes are deterministic and self-disabling, each process Pi contains some
actions that are enabled in ¬L(xi−1, xi). After the execution of such actions
L(xi−1, xi) holds by setting xi to some value λ ∈ M , and Pi becomes disabled.
Due to livelock-freedom of p and Section 1, no periodic propagations should
exists in p. That is, there are no closed walks in the action graph of p other than
self-loops over λ. The existence of such self-loops means L(λ, λ) holds. ut

Using the proof of Section 5, we present Algorithm 1. Since this algorithm is
self-explanatory, we just prove its soundness and completeness.

Theorem 6 (Soundness). Algorithm 1 is sound.

Proof. The proof of soundness includes two parts, namely proof of closure of I
and convergence to I, where I = ∀i : L(xi−1, xi). Step 7 of the algorithm guar-
antees closure. Steps 4 to 7 ensure that starting from any state where L(xi−1, xi)
does not hold, process Pi will eventually set the value of xi to γ, hence evalu-
ating L(xi−1, xi) to true. Likewise, every process would perform local recovery,
thereby eventually ensuring that ∀i : L(xi−1, xi) holds. ut

Theorem 7 (Completeness). Algorithm 1 is complete.

Proof. This algorithm declares failure only in Step 2, where no value γ exists
that can satisfy L(xi−1, xi). The non-existence of some value that can make
L(xi−1, xi) true implies that no process can recover to its local invariant; hence
self-stabilization to I is impossible. ut

We now present some case studies for the synthesis of parameterized unidi-
rectional symmetric rings using Algorithm 1.
Sum-Not-2 protocol. The Sum-Not-2 protocol is a simple but interesting
protocol that illustrates the complexities of designing self-stabilizing systems.
This is again a protocol on unidirectional parameterized rings with a domain of
M = 3 values; i.e., {0, 1, 2}. The invariant of the protocol specifies the legitimate
states where ∀i : (xi−1 + xi) 6= 2 holds, where addition and subtraction are in

modulo 3. As such, for each process Pi, we have L(xi−1, xi)
def
=(xi−1 + xi) 6= 2.

Figure 3a illustrates the directed graph representing L in the locality of a process.
(Notice that processes are symmetric.) In this case, there are two candidate
values for γ, where L(γ, γ) holds; i.e., values of 0 and 2. Wlog, we choose γ = 0

85

www.manaraa.com

Algorithm 1 Synthesizing parameterized self-stabilizing unidirectional rings.

SynUniRing(L(xi−1, xi): state predicate, M : domain size)

1: Check if a value γ ∈ ZM exists such that L(γ, γ) = true.
2: If no such γ exists, then return ∅ since no solution exists for systems with more

than M processes due to [5].
3: Construct relation L as a graph G = (V,E), where each vertex v ∈ V represents a

value in ZM and each e ∈ E captures an arc (v, v′) from value v to v′ if and only
if L(v, v′) = true.

4: Induce a subgraph G′ = (V ′, E′) that contains all nodes of G that participate in
cycles involving γ.

5: Compute a spanning tree of G′ rooted at γ.
6: For each node v ∈ G that is absent from G′, include an arc from v to the root of

the spanning tree of G′. The resulting graph would still be a tree, denoted T .
7: Include a self-loop (γ, γ) at the root of T .
8: Transform T into an action graph of a protocol by the following step:

For each arc (a, c) in T , where a, c ∈ ZM , label (a, c) with every value b
for which L(a, b) = false and b 6= c.

9: Return the actions represented by the arcs of T .

and form the spanning tree of the graph G with the root of 0. Stripping the graph
in Figure 3b from the labels on its arcs would give us the spanning tree of G, and
the graph with the labels is the action graph of the synthesized self-stabilizing
protocol (in Figure 3c).

Even Difference. The Even Difference protocol specifies the local invariant of

each process Pi as L(xi−1, xi)
def
=((xi−1−xi) mod 2) = 0, where M = 4. Thus, the

set of legitimate states is ∀i : ((xi−1 − xi) mod 2) = 0. Notice that if there is an
even (respectively, odd) value in the ring, then all values will be even (respec-
tively, odd) in a legitimate state. As such, from any state, Even Difference will
converge to either an all-odd or an all-even state. This protocol has applications
in choosing a common parity policy in a distributed system, where from an arbi-
trary state all nodes will agree on a common parity policy. Figure 4a represents
the graph corresponding to the predicate L. All four values in the domain M
are candidate values for γ. We choose γ = 1, and generate the action graph of
Figure 4b. Figure 4c illustrates the actions of the self-stabilizing protocol. Please
notice that this protocol would recover to global states where all values are odd.
Symmetrically, one could generate a protocol that would stabilize to states where
all values are even. This could be achieved by strengthening L(xi−1, xi) by an
additional constraint (xi mod 2 = 0) (respectively, (xi mod 2 6= 0)).

4 Undecidability of Synthesizing Bidirectional Rings

While synthesizing parameterized self-stabilizing protocols is decidable for uni-
directional rings, we show that synthesis is undecidable for bidirectional rings.

86

www.manaraa.com

0 1

2

(a) Graph representing predicate
L(xi−1, xi) = ((xi−1 + xi) 6= 2) where
each xj ∈ Z3

0 1

2

1

0

2

(b) Action graph of the self-stabilizing
protocol.

xi−1=0 ∧ xi=2 −→ xi := 0;

xi−1=1 ∧ xi=1 −→ xi := 0;

xi−1=2 ∧ xi=0 −→ xi := 1;

(c) Actions of each process Pi.

Fig. 3: Synthesis of parameterized Sum-Not-2.

Theorem 8. Given a predicate I
def
= (∀i : L(xi−1, xi, xi+1)) and variable domain

M (such that each xi ∈ ZM) for a bidirectional ring, it is undecidable (Π0
1 -

complete) whether a protocol can stabilize to I for all ring sizes.

Proof. To show undecidability, we reduce the problem of verifying livelock free-
dom of a unidirectional ring protocol p to the problem of synthesizing a bidirec-
tional ring protocol p′ that stabilizes to I ′, where I ′ has some form determined
by p. We construct I ′ such that exactly one bidirectional ring protocol p′ re-
solves all deadlocks without breaking closure, but it only stabilizes to I ′ if p is
livelock-free. Thus, p′ is the only candidate solution for the synthesis procedure,
and the synthesis succeeds iff p is livelock-free. Our reduction is broken into two
parts: (1) showing that exactly one particular p′ resolves all deadlocks without
breaking closure, and (2) showing that p′ is livelock-free iff p is livelock-free.
Silent stabilization. Wlog, we present our proof for silent stabilizing protocols
where the protocol p′ does not take any actions in I ′.
Assumptions about p. We assume that p (1) has a deterministic livelock that
(2) involves all actions and (3) includes all values. These assumptions do not
affect the undecidability of verifying livelock freedom in p. First, by Section 3,
deterministic livelock detection is undecidable in unidirectional rings. Second,
deterministic livelock detection remains undecidable when the livelock involves
all actions; otherwise, we could detect deterministic livelocks by checking each
subset of actions. Third, deterministic livelock detection is undecidable even
when the livelock involves all values; otherwise, we could detect deterministic
livelocks by checking each subset of values. Thus, verifying livelock-freedom un-
der our assumptions for p remains undecidable.
Forming I ′ from p. To form I ′, we augment each process Pi with a new
variable x′i−1 ∈ ZM , which is a local copy of xi−1, along with its xi ∈ ZM ,

making its effective domain size M ′
def
= M2. Since p′ is a bidirectional ring, Pi

can read xi−1 and x′i−2 from Pi−1 and can read xi+1 and x′i from Pi+1. For each

87

www.manaraa.com

0 1

2 3

(a) Graph representing predicate
L(xi−1, xi) = ((xi−1−xi) mod 2 = 0)
where each xj ∈ Z4.

0 1

2 3

0|23

3
0|2

(b) Action graph of the self-stabilizing
protocol.

(xi−1=1 ∨ xi−1=3) ∧ (xi=0 ∨ xi=2) −→ xi := 1;

(xi−1=0 ∨ xi−1=2) ∧ xi=3 −→ xi := 1;

(c) Actions of each process Pi.

Fig. 4: Synthesis of parameterized Even Difference.

action (a, b, c) ∈ ξ, we use xi−1 = a and x′i = b to encode the precondition of a
Pi action (a, b, c), and xi = c to encode its assignment. Notice that x′i is from
Pi+1 as depicted in Figure 5. Thus, we must ensure that x′i eventually obtains a

copy of xi. The resulting I ′
def
= (∀i : L′(xi−1, xi)) is as follows with instances of

xi replaced with x′i and a condition that x′i−1 is a copy of xi−1.

L′(xi−1, xi)
def
=

(
(xi−1, x

′
i) ∈ Pre(ξ)

=⇒ x′i−1 = xi−1 ∧ xi = ξ(xi−1, x
′
i)
)

Forming p′ from I ′. We want to show that a particular p′ stabilizes to I ′

when p is livelock-free, and it is the only bidirectional ring protocol that resolves
deadlocks without breaking closure. This p′ has the following action for each Pi.

(xi−1, x
′
i) ∈ Pre(ξ) ∧

(
x′i−1 6= xi−1 ∨ xi 6= ξ(xi−1, x

′
i)
)

−→ x′i−1 := xi−1; xi := ξ(xi−1, x
′
i);

Notice that p′ is deadlock-free and preserves closure since a process Pi can
act iff its L′(xi−1, xi) is unsatisfied. We now show that this p′ is the only such
protocol. Consider a ring of 5 processes executing p′ where a process P2 and
its readable variables from P1 and P3 have arbitrary values. By our earlier as-
sumptions about p, it has an action (a, b, c) for any given a or c (not both), and
(a, c) 6∈ Pre(ξ) because processes of p are self-disabling. Thus, we can choose x0
of P0 to make (x0, x

′
1) 6∈ Pre(ξ) for P1, and we can choose x′3 of P4 to make

(x2, x
′
3) 6∈ Pre(ξ) for P3. We have satisfied L′1 and L′3, and we can likewise satisfy

L′0 and L′4 by choosing values of x4 and x′4 respectively. Thus, p′ is in a legitimate
state iff L′2 is satisfied. Therefore, if L′2 is satisfied, then P2 cannot act without
adding a transition within I ′ (i.e., breaking closure). As a consequence, no other
process but P2 can act if L′2 is not satisfied. Since processes are symmetric, each

88

www.manaraa.com

P0 P1 P2 P3 P4 P0

x0 x1 x2 x3 x4 x0x′4 x′0 x′1 x′2 x′3 x′4

Fig. 5: Topology for bidirectional ring protocol p′ in Section 8. Each process Pi

owns x′i−1 and xi.

Pi of p′ must have the above action to ensure x′i−1 = xi−1 and xi = ξ(xi−1, x′i)
when (xi−1, x′i) 6∈ Pre(ξ).

If p has a livelock, then p′ has a livelock. Assume p has a livelock. We
show that p′ has a livelock too. We prove this by showing that p′ can simulate
the livelock of p. By assumption, p has a deterministic livelock from some state
C = (c0, . . . , cN−1) on a ring of size N where only the first process is enabled;
i.e., (ci−1, ci) ∈ Pre(ξ) only for i = 0. Let C ′ = (c′0, . . . , c

′
N−1) be the state of this

system after all processes act once. That is, c′0 = ξ(cN−1, c0) and c′i = ξ(c′i−1, ci)
for all other i > 0. We can construct a livelock state of p′ from the same xi = ci
values for all i and x′i = ci for all i < N − 1. The value of x′N−1 can be cN−1,
but can be anything else such that (xN−2, x′N−1) 6∈ Pre(ξ). In this state of p′,
only P0 is enabled since we assumed that (ci−1, ci) ∈ Pre(ξ) only holds for i = 0.
P0 then performs x0 := c′0 and x′N−1 := cN−1. This does not enable PN−1, but
does enable P1 to perform x1 := c′1 and x′0 := c′0. The execution continues for
P2, . . . , PN−1 to assign xi := c′i and x′i−1 := c′i−1 for all i > 1. At this point the
system is in a state where xi = c′i for all i and x′i = c′i for all i < N − 1. The
value of x′N−1 is cN−1, which leaves it disabled. This state of p′ matches the
state C ′ of p using the same constraints as we used to match the initial state C.
Therefore, p′ can continue to simulate p, showing that it has a livelock.

If p is livelock-free, then p′ is livelock-free. Assume p is livelock-free. We
show that p′ is livelock-free too. First, notice that if Pi+1 acts immediately after
Pi in p′, then Pi will not become enabled because xi = x′i and self-disabling
processes of p ensure that (a, c) 6∈ Pre(ξ) for every action (a, b, c). This means
that in a livelock, if an action of Pi+1 enables Pi, then Pi−1 must have acted since
the last action of Pi. As such, an action of Pi−1 must occur between every two
actions of Pi in a livelock of p′. The number of such propagations clearly cannot
increase, and thus must remain constant in a livelock. In order to avoid collisions,
an action of Pi+1 must occur between every two actions of Pi. Since Pi+1 always
acts before Pi in a livelock of p′, it ensures that x′i = xi when Pi acts. By making
this substitution, we see that Pi is only enabled when (xi−1, xi) ∈ Pre(ξ), and
assigns xi := ξ(xi−1, xi), which is equivalent to the behavior of protocol p. Since p
is livelock-free, p′ must also be livelock-free, hence self-stabilizing iff p is livelock-
free. Therefore, synthesizing stabilization on bidirectional rings is undecidable.

89

www.manaraa.com

5 Related Work

This section discusses existing work related to verification and synthesis of pa-
rameterized systems.
Verification. The literature for the verification of parameterized systems can
broadly be classified into undecidability results and verification methods for de-
cidable cases. In their seminal work, Apt and Kozen [2] prove that verifying an
Linear Temporal Logic (LTL) formula for a parameterized system is in general
undecidable. Suzuki [27] extends their results by showing that the verification
problem remains undecidable for unidirectional ring protocols of symmetric pro-
cesses. While Farahat and Ebnenasir [15] show that verifying deadlock-freedom
of parameterized rings is decidable, Fabret and Petit [14] prove that if the un-
derlying communication graph is a planar grid, then deadlock-freedom becomes
undecidable. In our previous work [22], we show that verifying livelock-freedom
is undecidable even on a symmetric ring of self-disabling and deterministic pro-
cesses. Our results imply the undecidability of verifying self-stabilization on uni-
directional rings. Several researchers present cutoff theorems that reduce the
verification of parameterized systems to the verification of a small-scale instan-
tiation (i.e., cutoff) thereof such that the parameterized system meets a specific
property iff its cutoff instantiation satisfies the desired property. For example,
Emerson and Namjoshi [13] provide a cutoff theorem for the verification of LTL
without the next-state operator in token passing rings. Several other researchers
[17,24,12,3] extend Emerson and Namjoshi’s results for other topologies and for
different properties/systems. Methods based on regular model checking [7,1] rep-
resent states of parameterized rings as strings of arbitrary length, and a protocol
is represented by a finite state transducer. The properties such as deadlock and
livelock-freedom are formulated in an automata-theoretic context. The aforemen-
tioned approaches are mostly used to verify local properties that are specified
in terms of the locality of a process or a proper subset of processes, whereas
self-stabilization includes a global liveness property that must be met by local
actions of all processes.
Synthesis. Existing synthesis methods can be classified into problem-specific
and general approaches. The problem-specific methods focus on generating a pa-
rameterized solution for a specific problem (e.g., counting [11,25], consensus [4],
sorting [8], etc.). General methods [20,16] for the synthesis of parameterized sys-
tems are mainly specification-based in that they provide a decision procedure for
extracting the skeleton of symmetric processes from their temporal logic spec-
ifications. Some existing methods [6] exploit cutoff theorems to generate the
template code of parameterized systems. Moreover, several researchers [21,11,6]
utilize SMT/SAT solvers for synthesis where they either directly encode the
synthesis problem as a set of constraints fed into the solver, or exploit counter-
example guided search [11] to find solutions in a bounded scope.

While existing methods are effective in their stated objectives, they often
make restrictive assumptions (e.g., synchrony, fairness) to mitigate the complex-
ity of synthesis. We believe that part of this complexity is because of the way
synthesis is conceived; that is, generate code skeleton from temporal logic spec-

90

www.manaraa.com

ifications. By contrast, we think that synthesis of parameterized systems must
be done on a property-based fashion where we devise methods for the synthe-
sis of systems that meet a specific property (e.g., self-stabilization). Such an
investigation can be extended to different network topologies (e.g., tree, mesh).

6 Conclusions and Future Work

In this paper, we investigated the problem of synthesizing parameterized rings
that have the property of self-stabilization. The ring processes are determin-
istic and have constant state space. Moreover, we consider self-disabling pro-
cesses, where a process disables itself after executing an action until it is en-
abled again by the actions of other processes. While it is known that verify-
ing self-stabilization of unidirectional rings is undecidable [22], in this paper,
we present a surprising result that synthesizing self-stabilizing unidirectional
rings is actually decidable. We present a sound and complete algorithm for
the synthesis of self-stabilizing unidirectional rings, and apply our algorithms
to a few case studies. We also show that the synthesis problem becomes un-
decidable if we assume bidirectional rings. As an extension to this work, we
are investigating the application of our approach to other topologies such as
trees and meshes. Furthermore, we are integrating our algorithms in Protocon
(http://asd.cs.mtu.edu/projects/protocon/), which is a framework for the
synthesis of self-stabilizing systems.

References

1. P. A. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A survey of regular model
checking. In CONCUR, pages 35–48, 2004.

2. K. R. Apt and D. Kozen. Limits for automatic verification of finite-state concurrent
systems. Information Processing Letters, 22(6):307–309, 1986.

3. S. Außerlechner, S. Jacobs, and A. Khalimov. Tight cutoffs for guarded protocols
with fairness. In International Conference on Verification, Model Checking, and
Abstract Interpretation, pages 476–494. Springer, 2016.

4. P. Berman, J. A. Garay, and K. J. Perry. Towards optimal distributed consensus.
In Foundations of Computer Science, 1989., 30th Annual Symposium on, pages
410–415. IEEE, 1989.

5. S. Bernard, S. Devismes, M. G. Potop-Butucaru, and S. Tixeuil. Optimal de-
terministic self-stabilizing vertex coloring in unidirectional anonymous networks.
In 23rd IEEE International Symposium on Parallel and Distributed Processing,
IPDPS 2009, Rome, Italy, May 23-29, 2009, pages 1–8. IEEE, 2009.

6. R. Bloem, N. Braud-Santoni, and S. Jacobs. Synthesis of self-stabilising and
byzantine-resilient distributed systems. In International Conference on Computer
Aided Verification, pages 157–176. Springer, 2016.

7. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In
CAV, pages 403–418, 2000.

8. D. Bundala and J. Závodnỳ. Optimal sorting networks. In International Conference
on Language and Automata Theory and Applications, pages 236–247. Springer,
2014.

91

www.manaraa.com

9. L. De Moura and N. Bjørner. Satisfiability modulo theories: introduction and
applications. Communications of the ACM, 54(9):69–77, 2011.

10. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM, 17(11):643–644, 1974.

11. D. Dolev, J. H. Korhonen, C. Lenzen, J. Rybicki, and J. Suomela. Synchronous
counting and computational algorithm design. In Symposium on Self-Stabilizing
Systems, pages 237–250. Springer, 2013.

12. E. Emerson and V. Kahlon. Reducing model checking of the many to the few.
Automated Deduction-CADE-17, pages 236–254, 2000.

13. E. A. Emerson and K. S. Namjoshi. On reasoning about rings. International
Journal of Foundations of Computer Science, 14(4):527–550, 2003.

14. A. Fabret and A. Petit. On the undecidability of deadlock detection in families of
nets. volume 900 of Lecture Notes in Computer Science, pages 479–490. 1995.

15. A. Farahat and A. Ebnenasir. Local reasoning for global convergence of parameter-
ized rings. In IEEE International Conference on Distributed Computing Systems
(ICDCS), pages 496–505, 2012.

16. B. Finkbeiner and S. Schewe. Bounded synthesis. International Journal on Soft-
ware Tools for Technology Transfer, 15(5-6):519–539, 2013.

17. S. M. German and A. P. Sistla. Reasoning about systems with many processes.
Journal of the ACM, 39:675–735, 1992.

18. M. G. Gouda and F. F. Haddix. The stabilizing token ring in three bits. Journal
of Parallel and Distributed Computing, 35(1):43–48, May 1996.

19. D. Jackson. Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol., 11(2):256–290, 2002.

20. S. Jacobs and R. Bloem. Parameterized synthesis. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, pages 362–376.
Springer, 2012.

21. A. Khalimov, S. Jacobs, and R. Bloem. Towards efficient parameterized synthesis.
In International Workshop on Verification, Model Checking, and Abstract Inter-
pretation, pages 108–127. Springer, 2013.

22. A. Klinkhamer and A. Ebnenasir. Verifying livelock freedom on parameterized
rings and chains. In International Symposium on Stabilization, Safety, and Security
of Distributed Systems, pages 163–177, 2013.

23. A. Klinkhamer and A. Ebnenasir. Shadow/puppet synthesis: A stepwise method
for the design of self-stabilization. IEEE Transactions on Parallel and Distributed
Systems, 27(11):3338 – 3350, Feb. 2016.

24. R. P. Kurshan and K. L. McMillan. A structural induction theorem for processes.
Information and Computation, 117(1):1–11, 1995.

25. C. Lenzen and J. Rybicki. Near-optimal self-stabilising counting and firing squads.
arXiv preprint arXiv:1608.00214, 2016.

26. A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesis. In
Proceedings of 31st IEEE Symposium on Foundation of Computer Science, pages
746–757, Washington, DC, USA, 1990. IEEE Computer Society.

27. I. Suzuki. Proving properties of a ring of finite-state machines. Information Pro-
cessing Letters, 28(4):213–214, July 1988.

28. G. Varghese. Self-stabilization by local checking and correction. PhD thesis, MIT,
1993.

29. G. Varghese. Self-stabilization by counter flushing. In The 13th Annual ACM
Symposium on Principles of Distributed Computing, pages 244–253, 1994.

92

www.manaraa.com

Bisimilarity of Open Terms in Stream GSOS?

Filippo Bonchi1, Matias David Lee1 and Jurriaan Rot2

1 Univ Lyon, ENS de Lyon, CNRS, UCB Lyon 1, LIP, France
[filippo.bonchi,matias-david.lee]@ens-lyon.fr

2 Radboud University, Nijmegen, The Netherlands jrot@cs.ru.nl

Abstract. Stream GSOS is a specification format for operations and
calculi on infinite sequences. The notion of bisimilarity provides a canoni-
cal proof technique for equivalence of closed terms in such specifications.
In this paper, we focus on open terms, which may contain variables,
and which are equivalent whenever they denote the same stream for ev-
ery possible instantiation of the variables. Our main contribution is to
capture equivalence of open terms as bisimilarity on certain Mealy ma-
chines, providing a concrete proof technique. Moreover, we introduce an
enhancement of this technique, called bisimulation up-to substitutions,
and show how to combine it with other up-to techniques to obtain a
powerful method for proving equivalence of open terms.

1 Introduction

Structural operational semantics (SOS) can be considered the de facto standard
to define programming languages and process calculi. The SOS framework relies
on defining a specification consisting of a set of operation symbols, a set of labels
or actions and a set of inference rules. The inference rules describe the behaviour
of each operation, typically depending on the behaviour of the parameters. The
semantics is then defined in terms of a labelled transition system over (closed)
terms constructed from the operation symbols. Bisimilarity of closed terms (∼)
provides a canonical notion of behavioural equivalence.

It is also interesting to study equivalence of open terms, for instance to express
properties of program constructors, like the commutativity of a non-deterministic
choice operator. The latter can be formalised as the equation X + Y = Y + X ,
where the left and right hand sides are terms with variables X ,Y. Equivalence
of open terms (∼o) is usually based on ∼: for all open terms t1, t2

t1 ∼o t2 iff for all closed substitutions φ, φ(t1) ∼ φ(t2). (1)

The main problem of such a definition is the quantification over all substitutions:
one would like to have an alternative characterisation, possibly amenable to the
coinduction proof principle. This issue has been investigated in several works,
like [7, 15, 3, 1, 11, 13, 20].

? The research leading to these results has received funding from the European Re-
search Council (FP7/2007-2013, grant agreement nr. 320571; as well as from the
LABEX MILYON (ANR-10-LABX-0070, ANR-11-IDEX-0007), the project PACE
(ANR-12IS02001) and the project REPAS (ANR-16-CE25-0011).

93

www.manaraa.com

(a)
n
n−→0

x
n−→x′ y

m−−→y′

x⊕y
n+m−−−−→x′⊕y′

x
n−→x′ y

m−−→y′

x⊗y
n×m−−−−→(n⊗y′)⊕(x′⊗y)

(b)
n
n−→0

x
n−→x′ y

m−−→y′

x⊕y
n+m−−−−→x′⊕y′

x
n−→x′ y

m−−→y′

x⊗y
n×m−−−−→(n⊗y′)⊕(x′⊗m.y′)

x
m−−→x′

n.x
n−→m.x′

(c)
n
b|n−−→0

x
b|n−−→x′ y

b|m−−−→y′

x⊕y
b|n+m−−−−−→x′⊕y′

x
b|n−−→x′ y

b|m−−−→y′

x⊗y
b|n×m−−−−−→(n⊗y′)⊕(x′⊗m.y′)

x
b|m−−−→x′

n.x
b|n−−→m.x′

(d)
X

ς|ς(X)−−−−→X n
ς|n−−→0

. . . x
ς|n−−→x′ y

ς|m−−−→y′

x⊗y
ς|n×m−−−−−→(n⊗y′)⊕(x′⊗m.y′)

x
ς|m−−−→x′

n.x
ς|n−−→m.x′

Figure 1. A stream GSOS specification (a) is transformed first into a monadic spec-
ification (b), then in a Mealy specification (c) and finally in a specification for open
terms (d). In these rules, n and m range over real numbers, b over an arbitrary set B,
X over variables and ς over substitutions of variables into reals.

In this paper, we continue this line of research, focusing on the simpler setting
of streams, which are infinite sequences over a fixed data type. More precisely, we
consider stream languages specified in the stream GSOS format [10], a syntactic
rule format enforcing several interesting properties. We show how to transform
a stream specification into a Mealy machine specification that defines the oper-
ational semantics of open terms. Moreover, a notion of bisimulation – arising in
a canonical way from the theory of coalgebras [16] – exactly characterises ∼o as
defined in (1).

Our approach can be illustrated by taking as running example the fragment of
the stream calculus [18] presented in Figure 1(a). The first step is to transform
a stream GSOS specification (Section 2) into a monadic one (Section 3). In
this variant of GSOS specifications, no variable in the source of the conclusion
appears in the target of the conclusion. For example, in the stream specification
in Figure 1(a), the rule associated to ⊗ is not monadic. The corresponding
monadic specification is illustrated in Figure 1(b). Notice this process requires
the inclusion of a family of prefix operators (on the right of Figure 1(b)) that
satisfy the imposed restriction.

The second step – based on [8] – is to compute the pointwise extension of
the obtained specification (Section 4). Intuitively, we transform a specification
of streams with outputs in a set A into a specification of Mealy machines with
inputs in an arbitrary set B and outputs in A, by replacing each transition

a−→
(for a ∈ A) with a transition

b|a−−→ for each input b ∈ B. See Figure 1(c).

In the last step (Section 5), we fix B = V → A, the set of functions assigning
outputs values in A to variables in V. To get the semantics of open terms, it
only remains to specify the behaviours of variables in V. This is done with the
leftmost rule in Figure 1(d).

94

www.manaraa.com

As a result of this process, we obtain a notion of bisimilarity over open terms,
which coincides with behavioural equivalence of all closed instances, and provides
a concrete proof technique for equivalence of open terms. By relating open terms
rather than all its possible instances, this novel technique often enables to use
finite relations, while standard bisimulation techniques usually require relations
of infinite size on closed terms. In Section 6 we further enhance this novel proof
technique by studying bisimulation up-to [14]. We combine known up-to tech-
niques with a novel one which we call bisimulation up-to substitutions.

2 Preliminaries

We define the two basic models that form the focus of this paper: stream systems,
that generate infinite sequences (streams), and Mealy machines, that generate
output streams given input streams.

Definition 2.1. A stream system with outputs in a set A is a pair (X, 〈o, d〉)
where X is a set of states and 〈o, d〉 : X → A ×X is a function, which maps a
state x ∈ X to both an output value o(x) ∈ A and to a next state d(x) ∈ X.

We write x
a−→ y whenever o(x) = a and d(x) = y.

Definition 2.2. A Mealy machine with inputs in a set B and outputs in a set A
is a pair (X,m) where X is a set of states and m : X → (A×X)B is a function
assigning to each x ∈ X a map m(x) = 〈ox, dx〉 : B → A × X. For all inputs
b ∈ B, ox(b) ∈ A represents an output and dx(b) ∈ X a next state. We write

x
b|a−−→ y whenever ox(b) = a and dx(b) = y.

We recall the notion of bisimulation for both models.

Definition 2.3. Let (X, 〈o, d〉) be a stream system. A relation R ⊆ X ×X is a
bisimulation if for all (x, y) ∈ R, o(x) = o(y) and (d(x), d(y)) ∈ R.

Definition 2.4. Let (X,m) be a Mealy machine. A relation R ⊆ X × X is a
bisimulation if for all (x, y) ∈ R and b ∈ B, ox(b) = oy(b) and (dx(b), dy(b)) ∈ R.

For both kind of systems, we say that x and y are bisimilar, notation x ∼ y,
if there is a bisimulation R s.t. x R y.

Stream systems and Mealy machines, as well as the associated notions of
bisimulation, are instances of the theory of coalgebras [16]. Coalgebras provide a
suitable mathematical framework to study state-based systems and their seman-
tics at a high level of generality. In the current paper, the theory of coalgebras
underlies and enables our main results.

Definition 2.5. Given a functor F : Set→ Set, an F -coalgebra is a pair (X, d),
where X is a set (called the carrier) and d : X → FX is a function (called the
structure). An F -coalgebra morphism from d : X → FX to d′ : Y → FY is a
map h : X → Y such that Fh ◦ d = d′ ◦ h.

95

www.manaraa.com

Stream systems and Mealy machines are F -coalgebras for the functors FX =
A×X and FX = (A×X)B , respectively.

The semantics of systems modelled as coalgebras for a functor F is provided
by the notion of final coalgebra. A coalgebra ζ : Z → FZ is called final if for
every F -coalgebra d : X → FX there is a unique morphism |[−]| : X → Z such
that |[−]| is a morphism from d to ζ. We call |[−]| the coinductive extension of d.

Intuitively, a final coalgebra ζ : Z → FZ defines all possible behaviours of
F -coalgebras, and |[−]| assigns behaviour to all states x, y ∈ X. This motivates
to define x and y to be behaviourally equivalent iff |[x]| = |[y]|. Under the con-
dition that F preserves weak pullbacks, behavioural equivalence coincides with
bisimilarity, i.e., x ∼ y iff |[x]| = |[y]| (see [16]). This condition is satisfied by (the
functors for) stream systems and Mealy machines. In the sequel, by ∼ we hence
refer both to bisimilarity and behavioural equivalence.

Final coalgebras for stream systems and Mealy machines will be pivotal for
our exposition. We briefly recall them, following [16, 9]. The set Aω of streams
over A carries a final coalgebra for the functor FX = A×X. For every stream
system 〈o, d〉 : X → A ×X, the coinductive extension |[−]| : X → Aω assigns to

a state x ∈ X the stream a0a1a2 . . . whenever x
a0−−→ x1

a1−−→ x2
a2−−→ . . .

Recalling a final coalgebra for Mealy machines requires some more care. Given
a stream β ∈ Bω, we write β�n for the prefix of β of length n. A function
c : Bω → Aω is causal if for all n ∈ N and all β, β′ ∈ Bω: β�n = β′�n entails
c(β)�n = c(β′)�n. The set Γ (Bω, Aω) = {c : Bω → Aω | c is causal} carries
a final coalgebra for the functor FX = (A × X)B . For every Mealy machine
m : X → (A × X)B , the coinductive extension |[−]| : X → Γ (Bω, Aω) assigns
to each state x ∈ X and each input stream b0b1b2 · · · ∈ Bω the output stream

a0a1a2 · · · ∈ Aω whenever x
b0|a0−−−−→ x1

b1|a1−−−−→ x2
b2|a2−−−−→ . . .

2.1 System Specifications

Different kinds of transition systems, like stream systems or Mealy machines, can
be specified by means of algebraic specification languages. The syntax is given by
an algebraic signature Σ, namely a collection of operation symbols {fi | i ∈ I}
where each operator fi has a (finite) arity ni ∈ N. For a set X, TΣX denotes
the set of Σ-terms with variables over X. The set of closed Σ-terms is denoted
by TΣ∅. We omit the subscript when Σ is clear from the context.

A standard way to define the operational semantics of these languages is by
means of structural operational semantics (SOS) [12]. In this approach, the se-
mantics of each of the operators is described by syntactic rules, and the behaviour
of a composite system is given in terms of the behaviour of its components. We
recall stream GSOS [10], a specification format for stream systems.

Definition 2.6. A stream GSOS rule r for a signature Σ and a set A is a rule

x1
a1−−→ x′1 · · · xn

an−−→ x′n
f(x1, . . . , xn)

a−→ t
(2)

96

www.manaraa.com

where f ∈ Σ with arity n, x1, . . . , xn, x
′
1, . . . , x

′
n are pairwise distinct variables, t

is a term built over variables {x1, . . . , xn, x
′
1, . . . , x

′
n} and a, a1, . . . , an ∈ A. We

say that r is triggered by (a1, . . . , an) ∈ An.
A stream GSOS specification is a tuple (Σ,A,R) where Σ is a signature, A

is a set of actions and R is a set of stream GSOS rules for Σ and A s.t. for each
f ∈ Σ of arity n and each tuple (a1, . . . , an) ∈ An, there is only one rule r ∈ R
for f that is triggered by (a1, . . . , an).

A stream GSOS specification allows us to extend any given stream system
〈o, d〉 : X → A×X to a stream system 〈o, d〉 : TX → A×TX, by induction: the
base case is given by 〈o, d〉, and the inductive cases by the specification. This
construction can be defined formally in terms of proof trees, or by coalgebraic
means; we adopt the latter approach, which is recalled later in this section.

There are two important uses of the above construction: (A) applying it to
the (unique) stream system carried by the empty set ∅ yields a stream system
over closed terms, i.e., of the form T∅ → A× T∅; (B) applying the construction
to the final coalgebra yields a stream system of the form TAω → A× TAω. The
coinductive extension |[−]| : TAω → Aω of this stream system is, intuitively, the
interpretation of the operations in Σ on streams in Aω.

a
a−→ a

∀a ∈ A
x

a−→ x′ y
b−→ y′

alt(x, y)
a−→ alt(y′, x′)

∀a, b ∈ A

Figure 2. The GSOS-rules of our running example

alt(a, alt(b, c))

alt(alt(c, b), a)

a c

Figure 3. A stream sys-
tem

Example 2.1. Let (Σ,A,R) be a stream GSOS specification where the signature
Σ consists of constants {a | a ∈ A} and a binary operation alt. The set R contains
the rules in Figure 2. For an instance of (A), the term alt(a, alt(b, c)) ∈ T∅ defines
the stream system depicted in Figure 3. For an instance of (B), the operation
alt : Aω ×Aω → Aω maps streams a0a1a2 . . . , b0b1b2 . . . to a0b1a2b2

Example 2.2. We now consider the specification (Σ,R, R) which is the fragment
of the stream calculus [17, 18] consisting of the constants n ∈ R and the binary
operators sum ⊕ and (convolution) product ⊗. The set R is defined in Figure 1

(a). For an example of (A), consider n ⊕m n+m−−−−→ 0 ⊕ 0
0−→ 0 ⊕ 0

0−→ For
(B), the induced operation ⊕ : Rω × Rω → Rω is the pointwise sum of streams,
i.e., it maps any two streams n0n1 . . . , m0m1 . . . to (n0 +m0)(n1 +m1)

Definition 2.7. We say that a stream GSOS rule r as in (2) is monadic if t is a
term built over variables {x′1, . . . , x′n}. A stream GSOS specification is monadic
if all its rules are monadic.

97

www.manaraa.com

The specification of Example 2.1 satisfies the monadic stream GSOS format,
while the one of Example 2.2 does not since, in the rules for ⊗, the variable y
occurs in the arriving state of the conclusion.

The notions introduced above for stream GSOS, as well as the analogous
ones for standard (labeled transition systems) GSOS [5], can be reformulated
in an abstract framework – the so-called abstract GSOS [19, 10] – that will be
pivotal for the proof of our main result.

In this setting, signatures are represented by polynomial functors: a signature
Σ corresponds to the polynomial functor ΣX =

∐
i∈I X

ni . For instance, the
signature Σ in Example 2.1 corresponds to the functor ΣX = A + (X × X),
while the signature of Example 2.2 corresponds to the functor ΣX = R + (X ×
X) + (X ×X). Models of a signature are seen as algebras for the corresponding
functor.

Definition 2.8. Given a functor F : Set → Set, an F -algebra is a pair (X, d),
where X is the carrier set and d : FX → X is a function. An algebra homo-
morphism from an F -algebra (X, d) to an F -algebra (Y, d′) is a map h : X → Y
such that h ◦ d = d′ ◦ Fh.

Particularly interesting are initial algebras: an F -algebra is called initial if there
exists a unique algebra homomorphism from it to every F -algebra. For a functor
corresponding to a signature Σ, the initial algebra is (T∅, κ) where κ : ΣT∅ → T∅
maps, for each i ∈ I, the tuple of closed terms t1, . . . tni to the closed term
fi(t1, . . . tni). For every set X, we can define in a similar way κX : ΣTX → TX.
The free monad over Σ consists of the endofunctor T : Set→ Set, mapping every
set X to TX, together with the natural transformations η : Id =⇒ T (interpre-
tation of variables as terms) and µ : TT =⇒ T (glueing terms built of terms).
Given an algebra σ : ΣY → Y , for any function f : X → Y there is a unique
algebra homomorphism f† : TX → Y from (TX, κX) to (Y, σ). In particular, the
identity function id : X → X induces a unique algebra homomorphism from TX
to X, which we denote by σ] : TX → X; this is the interpretation of terms in σ.

Definition 2.9. An abstract GSOS specification (of Σ over F) is a natural
transformation λ : Σ(Id × F) =⇒ FT . A monadic abstract GSOS specification
(in short, monadic specification) is a natural transformation λ : ΣF =⇒ FT .

By instantiating the functor F in the above definition to the functor for streams
(FX = A×X) one obtains all and only the stream GSOS specifications. Instead,
by taking the functor for Mealy machines (FX = (A × X)B) one obtains the
Mealy GSOS format [10]: for the sake of brevity, we do not report the concrete
definition here but this notion will be important in Section 5 where, to deal with
open terms, we transform stream specifications into Mealy GSOS specifications.

Example 2.3. For every set X, the rules in Example 2.1 define a function λX :
A+ (A×X)× (A×X)→ (A×TΣX) as follows: each a ∈ A is mapped to (a, a)
and each pair (a, x′), (b, y′) ∈ (A×X)× (A×X) is mapped to (a, alt(y′, x′)) [10].

98

www.manaraa.com

We focus on monadic distributive laws for most of the paper, and since they
are slightly simpler than abstract GSOS specifications, we only recall the relevant
concepts for monadic distributive laws. However, we note that the concepts below
can be extended to abstract GSOS specifications; see, e.g., [4, 10] for details.

A monadic abstract GSOS specification induces a distributive law ρ : TF =⇒
FT . This distributive law allows us to extend any F -coalgebra d : X → FX to
an F -coalgebra on terms:

TX
Td // TFX

ρX // FTX

This construction generalises and formalises the aforementioned extension of
stream systems to terms by means of a stream GSOS specification. In particular,
(A) the unique coalgebra on the empty set ! : ∅ → F∅ yields an F -coalgebra on
closed terms T∅ → FT∅. If F has a final coalgebra (Z, ζ), the unique morphism
|[−]|c : T∅ → Z defines the semantics of closed terms.

T∅ TF∅ FT∅
(A)

Z FZ

|[−]|c

T ! ρ∅

ζ

F |[−]|c

TZ TFZ FTZ

(B)

Z FZ

|[−]|a

Tζ ρZ

ζ

F |[−]|a

Further (B), the final coalgebra (Z, ζ) yields a coalgebra on TZ. By finality,
we then obtain a T -algebra over the final F -coalgebra, which we denote by
|[−]|a : TZ → Z and we call it the abstract semantics. We define the algebra
induced by λ as the Σ-algebra σ : ΣZ → Z given by

ΣZ
ΣηZ // ΣTZ

κZ // TZ
|[−]|a // Z . (3)

3 Making arbitrary stream GSOS specifications monadic

The results presented in the next section are restricted to monadic specifications,
but one can prove them for arbitrary GSOS specifications by exploiting some
auxiliary operators, introduced in [8] with the name of buffer. Theorem 6.1 in
Section 6 only holds for monadic GSOS specifications. This does not restrict
the applicability of our approach: as we show below, arbitrary stream GSOS
specifications can be turned into monadic ones.

Let (Σ,A,R) be a stream GSOS specification. The extended signature Σ̃ is
given by {f̃ | f ∈ Σ} ∪ {a. | a ∈ A}. The set of rules R̃ is defined as follows:

– For all a, b ∈ A, R̃ contains the following rule

x
b−→ x′

a.x
a−→ b.x′

(4)

99

www.manaraa.com

– For each rule r =
x1

a1−−→x′1 ··· xn
an−−→x′n

f(x1,...,xn)
a−→t(x1,...,xn,x′1,...,x

′
n)
∈ R, the set R̃ contains

r̃ =
x1

a1−−→ x′1 · · · xn
an−−→ x′n

f̃(x1, . . . , xn)
a−→ t̃(a1.x′1, . . . , a

′
n.x
′
n, x
′
1, . . . , x

′
n)

(5)

where t̃ is the term obtained from t by replacing each g ∈ Σ by g̃ ∈ Σ̃.

The specification (Σ̃, A, R̃) is now monadic and preserves the original semantics
as stated by the following result.

Theorem 3.1. Let (Σ,A,R) be a stream GSOS specification and (Σ̃, A, R̃) be
the corresponding monadic one. Then, for all t ∈ TΣ∅, t ∼ t̃.

Example 3.1. Consider the non-monadic specification in Example 2.2. The cor-
responding monadic specification consists of the rules in Figure 1 (b) where, to
keep the notation light, we used operation symbols f rather than f̃ .

4 Pointwise Extensions of Monadic GSOS Specifications

The first step to deal with the semantics of open terms induced by a stream GSOS
specification is to transform the latter into a Mealy GSOS specification. We
follow the approach in [8] which is defined for arbitrary GSOS but, as motivated
in Section 3, we restrict our attention to monadic specifications.

Let (Σ,A,R) be a monadic stream GSOS specification and B some in-
put alphabet. The corresponding monadic Mealy GSOS specification is a tuple
(Σ,A,B,R), where R is the least set of Mealy rules which contains, for each

stream GSOS rule r =
x1

a1−−→x′1 ··· xn
an−−→x′n

f(x1,...,xn)
a−→t(x′1,...,x

′
n)
∈ R and b ∈ B, the Mealy rule

rb defined by

rb =
x1

b|a1−−−→ x′1 · · · xn
b|an−−−→ x′n

f(x1, . . . , xn)
b|a−−→ t(x′1, . . . , x

′
n)

(6)

An example of this construction is shown in Figure 1 (c).

Recall from Section 2 that any abstract GSOS specification induces a Σ-
algebra on the final F -coalgebra. Let σ : ΣAω → Aω be the algebra induced by
the stream specification and σ : ΣΓ (Bω, Aω) → Γ (Bω, Aω) the one induced by
the corresponding Mealy specification. Theorem 4.1, at the end of this section,
informs us that σ is the pointwise extension of σ.

Definition 4.1. Let g : (Aω)n → Aω and ḡ : (Γ (Bω, Aω))n → Γ (Bω, Aω) be two
functions. We say that ḡ is the pointwise extension of g iff for all c1, . . . , cn ∈
Γ (Bω, Aω) and β ∈ Bω, ḡ(c1, . . . , cn)(β) = g(c1(β), . . . , cn(β)). This notion is
lifted in the obvious way to Σ-algebras for an arbitrary signature Σ.

100

www.manaraa.com

Example 4.1. Recall the operation ⊕ : Aω × Aω → Aω from Example 2.2 that
arises from the specification in Figure 1 (a) (it is easy to see that the same op-
eration also arises from the monadic specification in Figure 1 (b)). Its pointwise
extension ⊕̄ : Γ (Bω,Rω) × Γ (Bω,Rω) → Γ (Bω,Rω) is defined for all c1, c2 ∈
Γ (Bω,Rω) and β ∈ Bω as (c1⊕̄c2)(β) = c1(β)⊕ c2(β). Theorem 4.1 tells us that
⊕̄ arises from the corresponding Mealy GSOS specification (Figure 1(c)).

In [8], the construction in (6) is generalised from stream specifications to
arbitrary abstract GSOS. The key categorical tool is the notion of costrength
for an endofunctor F : Set → Set. Given two sets B and X, we first define
εb : XB → X as εb(f) = f(b) for all b ∈ B. Then, csFB,X : F (XB)→ (FX)B is a

natural map in B and X, given by csFB,X(t)(b) = (Fεb)(t).

Now, given a monadic specification λ : ΣF =⇒ FT , we define λ̄ : Σ(FB) =⇒
(FT)B as the natural transformation that is defined for all sets X by

Σ(FX)B
csΣB,FX // (ΣFX)B

λBX // (FTX)B . (7)

Observe that λ̄ is also a monadic specification, but for the functor FB rather than
the functor F . The reader can easily check that for F being the stream functor
FX = A×X, the resulting λ̄ is indeed the Mealy specification corresponding to
λ as defined in (6).

It is worth to note that the construction of λ̄ for an arbitrary abstract GSOS
λ : Σ(Id×F) =⇒ FT , rather than a monadic one, would not work as in (7). The
solution devised in [8] consists of introducing some auxiliary operators as already
discussed in Section 3. The following result has been proved in [8] for arbitrary
abstract GSOS, with these auxiliary operators. Our formulation is restricted to
monadic specifications.

Theorem 4.1. Let F be a functor with a final coalgebra (Z, ζ), and let (Z̄, ζ̄)
be a final FB-coalgebra. Let λ : ΣF =⇒ FT be a monadic distributive law, and
σ : ΣZ → Z the algebra induced by it. The algebra σ̄ : ΣZ̄ → Z̄ induced by λ̄ is
a pointwise extension of σ.

In the theorem above, the notion of pointwise extension should be understood
as a generalisation of Definition 4.1 to arbitrary final F and FB-coalgebras. This
generalised notion, that has been introduced in [8], will not play a role for our
paper where F is fixed to be the stream functor FX = A×X.

5 Mealy Machines over Open Terms

We now consider the problem of defining a semantics for the set of open terms
TV for a fixed set of variables V. Our approach is based on the results in the
previous sections: we transform a monadic GSOS specification for streams with
outputs in A into a Mealy machine with inputs in AV and outputs in A, i.e., a

coalgebra for the functor FX = (A × X)A
V

. The coinductive extension of this

101

www.manaraa.com

Mealy machine provides the open semantics: for each open term t ∈ TV and
variable assignment ψ : V → Aω, it gives an appropriate output stream in Aω.
This is computed in a stepwise manner: for an input ς : V → A, representing
“one step” of a variable assignment ψ, we obtain one step of the output stream.

We start by defining a Mealy machine c : V → (A × V)A
V

on the set of
variables V as on the left below, for all X ∈ V and ς ∈ AV :

c(X)(ς) = (ς(X),X) X ς|ς(X)ff (8)

Concretely, this machine has variables as states and for each ς : V → A a self-
loop, as depicted on the right. Now, let λ : Σ(A × −) ⇒ A × T be a monadic

stream specification and λ̄ : Σ((A × −)A
V

) ⇒ (A × T (−))A
V

be the induced
Mealy specification, as defined in (7). As mentioned in Section 2, λ̄ defines a

distributive law ρ : T ((A × −)A
V

) ⇒ (A × T (−))A
V

, which allows to extend c

(see (8)) to a coalgebra mλ : TV → (A× TV)A
V

, given by

TV Tc // T (A× V)A
V ρV // (A× TV)A

V
. (9)

This is the Mealy machine of interest.

Example 5.1. Consider the stream specification λ of the operation alt, given in
Example 2.1. The states of the Mealy machine mλ are the open terms TV. The
transitions of terms are defined by the set of rules

a
ς|a−−→ a

x
ς|a−−→ x′ y

ς|b−−→ y′

alt(x, y)
ς|a−−→ alt(y′, x′)

for all ς : V → A and a, b ∈ A

together with the transitions for the variables as in (8). For instance, for each
X ,Y,Z ∈ V and all ς, ς ′ : V → A, we have the following transitions in mλ:

alt(X , alt(Y,Z))

alt(alt(Z,Y),X)

ς|ς(X) ς ′|ς ′(Z)

Example 5.2. For the fragment of the stream calculus introduced in Example 2.2,
the Mealy machine over open terms is defined by the rules in Figure 1(d). Below
we draw the Mealy machines of some open terms that will be useful later.

X ⊕ Y

ς|ς(X)+ς(Y)

��
Y ⊕ X

ς|ς(Y)+ς(X)

��
(X ⊕ Y)⊕Z

ς|(ς(X)+ς(Y))+ς(Z)

��
X ⊕ (Y ⊕ Z)

ς|ς(X)+(ς(Y)+ς(Z))

��

We define the open semantics below by the coinductive extension of mλ.
Let Γ̃ = Γ ((AV)ω, Aω) be the set of causal functions c : (AV)ω → Aω, which

is the carrier of the final coalgebra for the functor FX = (A × X)A
V

. Notice

102

www.manaraa.com

that a function c : (AV)ω → Aω can equivalently be presented as a function
c̃ : (Aω)V → Aω (swapping the arguments in the domain). Given such a function
c : (AV)ω → Aω and a function ψ : V → Aω, in the sequel, we sometimes abuse
of notation by writing c(ψ) where we formally mean c̃(ψ).

Definition 5.1. Let λ : Σ(A×−)⇒ A× T be a monadic stream GSOS specifi-
cation. The open semantics of λ is the coinductive extension |[−]|o : TV → Γ̃ of

the Mealy machine mλ : TV → (A× TV)A
V

defined in (9).

Behavioural equivalence of open terms can now be checked by means of bisim-
ulations on Mealy machines (Definition 2.4). We define open bisimilarity, de-
noted by ∼o, as the greatest bisimulation on mλ. Obviously, for all open terms
t1, t2 ∈ TV it holds that t1 ∼o t2 iff |[t1]|o = |[t2]|o. The following result provides
another useful characterisation of |[−]|o.

Lemma 5.1. Let λ be a monadic stream GSOS specification, with induced alge-
bra σ : ΣAω → Aω. Let λ̄ be the corresponding Mealy specification, with induced
algebra σ̄ : ΣΓ̃ → Γ̃ . Then the open semantics |[−]|o is the unique homomorphism
making the diagram below commute:

ΣTV ΣΓ̃

TV Γ̃

V

Σ|[]|o

κV σ̄
|[]|o

ηV
proj

(10)

where η and κ are defined by initiality (Section 2), and for each X ∈ V and
ψ : V → Aω, proj(X)(ψ) = ψ(X).

Observe that, by virtue of Theorem 4.1, the algebra σ̄ is the pointwise extension
of σ. This fact will be useful in the next section to relate ∼o with bisimilarity
on the original stream system.

5.1 Abstract, Open and Closed Semantics

Recall from Section 2 the abstract semantics |[−]|a : TAω → Aω arising as in (B)
from a monadic stream specification λ. The following proposition is the key to
prove Theorem 5.1 relating open bisimilarity and abstract semantics.

Proposition 5.1. Let |[−]|a and |[−]|o be the abstract and open semantics respec-
tively of a monadic stream GSOS specification λ. For any t ∈ TV, ψ : V → Aω:

|[t]|o(ψ) = |[(Tψ)(t)]|a .

As a simple consequence, we obtain the following characterization of ∼o.

103

www.manaraa.com

Theorem 5.1. For all t1, t2 ∈ TV, |[t1]|o = |[t2]|o iff for all ψ : V → Aω:
|[Tψ(t1)]|a = |[Tψ(t2)]|a.

This is one of the main results of this paper: Tψ(t1) and Tψ(t2) are expres-
sions in TAω built from symbols of the signature Σ and streams α1, . . . αn ∈ Aω.
By checking t1 ∼o t2 one can prove that the two expressions are equivalent for
all possible streams α1, . . . αn ∈ Aω.

Example 5.3. By using the Mealy machine mλ in Example 5.1, the relation

R ={(alt(X , alt(Y,Z)), alt(X , alt(W,Z))), (alt(alt(Z,Y),X), alt(alt(Z,W),X))}
is easily verified to be a bisimulation (Definition 2.4). In particular this shows
that |[(alt(X , alt(Y,Z))]|o = |[alt(X , alt(W,Z))]|o. By Theorem 5.1, we have that
|[Tψ(alt(X , alt(Y,Z))]|a = |[Tψ(alt(X , alt(W,Z)))]|a for all ψ : V → Aω, i.e.,

alt(α1, alt(α2, α3)) ∼ alt(α1, alt(α4, α3)) for all α1, α2, α3, α4 ∈ Aω.

The above law can be understood as an equivalence of program schemes stating
that one can always replace the stream α2 by an arbitrary stream α4, without
changing the result.

Example 5.4. By using the Mealy machines in Example 5.2, it is easy to check
that both {((X ⊕Y)⊕Z,X ⊕ (Y⊕Z))} and {(X ⊕Y,Y⊕X)} are bisimulations.
This means that |[(X ⊕ Y)⊕Z]|o = |[X ⊕ (Y ⊕ Z)]|o and |[X ⊕ Y]|o = |[Y ⊕ X]|o.
By Theorem 5.1 we obtain associativity and commutativity of ⊕:

(α1 ⊕ α2)⊕ α3 ∼ α1 ⊕ (α2 ⊕ α3) and α1 ⊕ α2 ∼ α2 ⊕ α1 for all α1, α2, α3 ∈ Aω.

Example 5.5. In a similar way, one can check that {((a+b).(X ⊕Y), a.X ⊕b.Y) |
a, b ∈ R} is a bisimulation. This means that |[(a+ b).(X ⊕ Y)]|o = |[a.X ⊕ b.Y]|o
for all a, b ∈ R and, using again Theorem 5.1, we conclude that (a+b).(α1⊕α2) ∼
a.α1 ⊕ b.α2 for all α1, α2 ∈ Aω.

Often, equivalence of open terms is defined by relying on the equivalence of
closed terms: two open terms are equivalent iff under all possible closed sub-
stitutions, the resulting closed terms are equivalent. For ∼o, this property does
not follow immediately by Theorem 5.1, where variables range over streams, i.e.,
elements of the final coalgebra. One could assume that all the behaviours of the
final coalgebra are denoted by some term, however this restriction would rule
out most of the languages we are aware of: in particular, the stream calculus
that can express only the so-called rational streams [18].

The following theorem, that is the second main result of this paper, only
requires that the stream GSOS specification is sufficiently expressive to describe
arbitrary finite prefixes. We use that any closed substitution φ : V → T∅ defines
φ† : TV → T∅ (see Section 2.1).

Theorem 5.2. Suppose λ : Σ(A × −) ⇒ A × TΣ is a monadic stream GSOS
specification which contains, for each a ∈ A, the prefix operator a.− as specified
in (4) in Section 3. Further, assume T∅ is non-empty.

Let |[−]|c and |[−]|o be the closed and open semantics respectively of λ. Then
for all t1, t2 ∈ TV: |[t1]|o = |[t2]|o iff |[φ†(t1)]|c = |[φ†(t2)]|c for all φ : V → T∅.

104

www.manaraa.com

x
a−→ x′

f(x)
a−→ f(x′ ⊕ x′)

x
a−→ x′

g(x)
a−→ g(x′ ⊕ x′)

Figure 4. f and g, operators over streams

x
ς|a−−→ x′

f(x)
ς|a−−→ f(x′ ⊕ x′)

x
ς|a−−→ x′

g(x)
ς|a−−→ g(x′ ⊕ x′)

Figure 5. Pointwise extensions of f and g.

Example 5.6. The specification in Figure 2 does not include the prefix operator,
therefore it does not meet the assumptions of Theorem 5.2. Instead, the monadic
GSOS specification in Figure 1(b) contains the prefix. Recall from Example 5.5
that (a + b).(X ⊕ Y) ∼o a.X ⊕ b.Y. Using Theorem 5.2, we can conclude that
(a+ b).(t1 ⊕ t2) ∼ a.t1 ⊕ b.t2 for all t1, t2 ∈ T∅.

6 Bisimulation up-to substitutions

In the previous section, we have shown that bisimulations on Mealy machines
can be used to prove equivalences of open terms specified in the stream GSOS
format. In this section we introduce up-to substitutions, an enhancement of the
bisimulation proof method that allows to deal with smaller, often finite, relations.
We also show that up-to substitutions can be effectively combined with other
well-known up-to techniques such as up-to bisimilarity and up-to context.

Intuitively, in a bisimulation up-to substitutions R, the states reached by a
pair of states do not need to be related by R, but rather by θ(R), for some
substitution θ : V → TV. We give a concrete example. Suppose we extend the
stream calculus of Example 2.2 with the operators f and g defined by the rules
in Figure 4. In Figure 5, we have the pointwise extensions of these new operators.
It should be clear that f(X) ∼ g(X). To try to formally prove f(X) ∼ g(X),
consider the relation R = {(f(X), g(X))}. For all ς : V → A, there are tran-

sitions f(X)
ς|ς(X)−−−−→ f(X ⊕ X) and g(X)

ς|ς(X)−−−−→ g(X ⊕ X). The outputs of
both transitions coincide but the reached states are not in R, hence R is not a
bisimulation. However it is a bisimulation up-to substitutions, since the arriving
states are related by θ(R), for some substitution θ mapping X to X ⊕X . In fact,
without this technique, any bisimulation relating f(X) and g(X) should contain
infinitely many pairs.

In order to prove the soundness of this technique, as well as the fact that it
can be safely combined with other known up-to techniques, we need to recall
some notions of the theory of up-to techniques in lattices from [14]. Given a
Mealy machine (X,m), we consider the lattice (P(X ×X),⊆) of relations over
X, ordered by inclusion, and the monotone map b : P(X × X) → P(X × X)
defined for all R ⊆ X ×X as

b(R) = {(s, t) ∈ X ×X | ∀b ∈ B, os(b) = ot(b) and ds(b) R dt(b)}. (11)

It is easy to see that post fixed points of b, i.e., relations R such that R ⊆
b(R), are exactly bisimulations for Mealy machines (Definition 2.4) and that its
greatest fixed point is ∼.

105

www.manaraa.com

For a monotone map f : P(X ×X)→ P(X ×X), a bisimulation up-to f is a
relation R such that R ⊆ bf(R). We say that f is compatible with b if fb(R) ⊆
bf(R) for all relations R. Two results in [14] are pivotal for us: first, if f is
compatible and R ⊆ bf(R) then R ⊆ ∼; second if f1 and f2 are compatible with
b then f1 ◦ f2 is compatible with b. The first result informs us that bisimilarity
can be proved by means of bisimulations up-to f , whenever f is compatible. The
second result states that compatible up-to techniques can be composed.

We now consider up-to techniques for the Mealy machine over open terms
(TV,mλ) as defined in Section 5. Recall that bisimilarity over this machine is
called open bisimilarity, denoted by ∼o. Up-to substitutions is the monotone
function (−)∀θ : P(TV × TV)→ P(TV × TV) mapping every R ⊆ TV × TV to

(R)∀θ = {(θ(t1), θ(t2)) | θ : V → TV and t1 R t2}.

Similarly, we define up-to context as the monotone function mapping every rela-
tionR ⊆ TV×TV to its contextual closure C(R) and up-to (open) bisimilarity as
the function mappingR to ∼o R ∼o = {(t1, t2) | ∃t′1, t′2 s.t. t1 ∼o t′1 R t′2 ∼o t2}.

Compatibility with b of up-to context and up-to bisimilarity hold immedi-
ately by the results in [6]. For the novel technique, up-to substitutions, we have:

Theorem 6.1. The function (−)∀θ is compatible with b.

As a consequence of the above theorem and the results in [14], up-to substi-
tutions can be used in combination with up-to bisimilarity and up-to context (as
well as any another compatible up-to technique) to prove open bisimilarity. We
will show this in the next, concluding example, for which a last remark is useful:
the theory in [14] also ensures that if f is compatible with b, then f(∼) ⊆ ∼. By
Theorem 6.1, this means that (∼o)∀θ ⊆ ∼o. The same obviously holds for the
contextual closure: C(∼o) ⊆ ∼o.

Example 6.1. We prove that the convolution product ⊗ distributes over the sum
⊕, i.e., α1 ⊗ (α2 ⊕ α3) ∼ (α1 ⊗ α2)⊕ (α1 ⊗ α3) for all streams α1, α2, α3 ∈ Rω.
By Theorems 5.1 and 6.1, to prove our statement it is enough to show that R =
{(X⊗(Y⊕Z), (X⊗Y)⊕(X⊗Z))} is a bisimulation up-to ∼o C(∼o (−)∀θ ∼o) ∼o.

By rules in Figure 1(d), for all ς : V → R, the transitions of the open terms
are

– X⊗(Y⊕Z)
ς|ς(X)×(ς(Y)+ς(Z))−−−−−−−−−−−−−−→ (ς(X)⊗(Y⊕Z))⊕(X⊗(ς(Y)+ς(Z)).(Y⊕Z))

– (X ⊗ Y)⊕ (X ⊗ Z)
ς|ς(X)×ς(Y)+ς(X)×ς(Z)−−−−−−−−−−−−−−−−−→

((ς(X)⊗ Y)⊕ (X ⊗ ς(Y).Y))⊕ ((ς(X)⊗Z)⊕ (X ⊗ ς(Z).Z))

For the outputs, it is evident that ς(X) × (ς(Y) + ς(Z)) = ς(X) × ς(Y) +
ς(X)× ς(Z). For the arriving states we need a few steps, where for all ς : V → R
and X ∈ V, ς(X) denotes either a real number (used as a prefix) or a constant
of the syntax (Example 2.2).

(a) X ⊗ (ς(Y).Y ⊕ ς(Z).Z) R∀θ (X ⊗ ς(Y).Y)⊕ (X ⊗ ς(Z).Z).

106

www.manaraa.com

(b) By Example 5.5 and C(∼o) ⊆∼o, we have that:
X ⊗ (ς(Y) + ς(Z)).(Y ⊕ Z) ∼o X ⊗ (ς(Y).Y ⊕ ς(Z)).Z).

(c) By (b) and (a):
X ⊗ (ς(Y) + ς(Z)).(Y ⊕ Z) ∼oR∀θ∼o (X ⊗ ς(Y).Y)⊕ (X ⊗ ς(Z).Z).

(d) ς(X)⊗ (Y ⊕ Z) R∀θ (ς(X)⊗ Y)⊕ (ς(X)⊗Z).
(e) Using (d) and (c) with context C = ⊕ :

(ς(X)⊗ (Y ⊕ Z))⊕ (X ⊗ (ς(Y) + ς(Z)).(Y ⊕ Z))
C(∼oR∀θ∼o) ((ς(X)⊗Y)⊕ (ς(X)⊕Z))⊕ ((X ⊗ ς(Y).Y)⊕ (X ⊗ ς(Z).Z)).

(f) By Example 5.4 (associativity and commutativity of ⊕) and (∼o)∀ρ ⊆ ∼o:
((ς(X)⊗ Y)⊕ (ς(X)⊕Z))⊕ ((X ⊗ ς(Y).Y)⊕ (X ⊗ ς(Z)).Z))
∼o ((ς(X)⊗ Y)⊕ (X ⊗ ς(Y).Y))⊕ ((ς(X)⊗Z)⊕ (X ⊗ ς(Z).Z)).

(g) By (e) and (f):
(ς(X)⊗ (Y ⊕ Z))⊕ (X × (ς(Y) + ς(Z)).(Y ⊕ Z))
∼oC(∼oR∀θ∼o)∼o ((ς(X)⊗Y)⊕(X⊗ς(Y).Y))⊕((ς(X)⊗Z)⊕(X⊗ς(Z).Z)).

7 Final remarks

In this paper we have studied the semantics of open terms specified in the stream
GSOS format. Our recipe consists in translating the stream specification into a
Mealy specification giving semantics to all open terms. Remarkably, this seman-
tics equates two open terms if and only if they are equivalent under all possible
interpretations of variables as streams (Theorem 5.1) or under the interpretation
of variables as closed terms (Theorem 5.2). Furthermore, semantic equivalence
can be checked by means of the bisimulation proof method enhanced with a
technique called up-to substitutions (Theorem 6.1).

Our work can be considered as a first step toward a (co)algebraic under-
standing of the semantics of open terms in the general setting of abstract GSOS
[19, 10]. While our approach exploits several peculiarities of the final coalge-
bra for stream systems, several intermediate results hold in the general setting:
for instance, the construction in Section 3 transforming arbitrary stream GSOS
specifications into monadic ones, seems to hold for arbitrary abstract GSOS.
Another promising clue in this direction comes from the way we specified the
semantics of variables in Section 5: it is reminiscent of the technique adopted
in [2] for dealing with open terms of process calculi denoting labeled transition
systems.

References

1. L. Aceto, M. Cimini, and A. Ingólfsdóttir. Proving the validity of equations in
GSOS languages using rule-matching bisimilarity. MSCS, 22(2):291–331, 2012.

2. Luca Aceto, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik. Finite equational
bases in process algebra: Results and open questions. In Processes, Terms and
Cycles, volume 3838 of LNCS, pages 338–367. Springer, 2005.

3. P. Baldan, A. Bracciali, and R. Bruni. A semantic framework for open processes.
Theor. Comput. Sci., 389(3):446–483, 2007.

107

www.manaraa.com

4. F. Bartels. On generalised coinduction and probabilistic specification formats. PhD
thesis, CWI, Amsterdam, 2004.

5. B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can’t be traced. J. ACM,
42(1):232–268, January 1995.

6. F. Bonchi, D. Petrisan, D. Pous, and J. Rot. A general account of coinduction
up-to. Acta Informatica, pages 1–64, 2016.

7. R. de Simone. Higher-level synchronising devices in Meije-SCCS. Theor. Comput.
Sci., 37:245–267, 1985.

8. H. H. Hansen and B. Klin. Pointwise extensions of GSOS-defined operations.
Mathematical Structures in Computer Science, 21(2):321–361, 2011.

9. H. H. Hansen and J. J. M. M. Rutten. Symbolic synthesis of mealy machines from
arithmetic bitstream functions. Sci. Ann. Comp. Sci., 20:97–130, 2010.

10. B. Klin. Bialgebras for structural operational semantics: An introduction. Theor.
Comput. Sci., 412(38):5043–5069, 2011.

11. D. Lucanu, E. Goriac, G. Caltais, and G. Rosu. CIRC: A behavioral verification
tool based on circular coinduction. In CALCO 2009. Proc., pages 433–442, 2009.

12. M. Mousavi, M. Reniers, and J. Groote. SOS formats and meta-theory: 20 years
after. Theor. Comput. Sci., 373(3):238–272, 2007.

13. A. Popescu and E. L. Gunter. Incremental pattern-based coinduction for process
algebra and its isabelle formalization. In FOSSACS, Proc., pages 109–127, 2010.

14. D. Pous and D. Sangiorgi. Enhancements of the bisimulation proof method. In
Advanced Topics in Bisimulation and Coinduction. Cambridge, 2012.

15. A. Rensink. Bisimilarity of open terms. Inf. Comput., 156(1-2):345–385, 2000.
16. J. Rutten. Universal coalgebra: a theory of systems. TCS, 249(1):3–80, 2000.
17. J. Rutten. Elements of stream calculus (an extensive exercise in coinduction).

ENTCS, 45:358–423, 2001.
18. J. Rutten. A tutorial on coinductive stream calculus and signal flow graphs. TCS,

343(3):443–481, 2005.
19. D. Turi and G. D. Plotkin. Towards a mathematical operational semantics. In

LICS 1997, Proceedings, pages 280–291, 1997.
20. H. Zantema and J. Endrullis. Proving equality of streams automatically. In Pro-

ceedings of RTA 2011, Novi Sad, Serbia, pages 393–408, 2011.

108

www.manaraa.com

TCE+: an Extension of the TCE Method for Detecting Equivalent

Mutants in Java Programs

Mahdi Houshmand, Samad Paydar

Dependable Distributed Embedded Systems (DDEmS) Laboratory

Computer Engineering Dept., Ferdowsi University of Mashhad

Mashhad, Iran

mahdi.houshmand@mail.um.ac.ir, s-paydar@um.ac.ir

Abstract. While mutation testing is considered to be an effective technique in

software testing, there are some impediments to its widespread use in industrial

projects. One of these challenges is the equivalent mutant problem, and a line of

research is dedicated to proposing new methods for addressing this problem.

Trivial Compiler Equivalence (TCE) method is recently introduced as a simple

technique that actually relies only on the optimizations made by the compiler. It

is shown by empirical studies that employing TCE with the gcc compiler results

in a fast and effective technique for detecting equivalent mutants in C programs.

However, considering the fact that the Java compilers generally do not perform

noticeable optimizations, the question is how effectively does TCE perform on

Java programs? In this paper, experimental evaluations are discussed which

demonstrate that using TCE technique with javac compiler results in very poor

performance. As a result, this paper proposes to use the Java obfuscators as the

complementary component, because of the optimizations they make. The exper-

imental evaluations confirm that using TCE with the ProGuard obfuscation tool

provides an effective and efficient method for detecting equivalent mutants in

Java programs.

Keywords: mutation testing; equivalent mutant; trivial compiler equivalence;

Java.

1 Introduction

Mutation testing is considered to be an effective approach to evaluate and also to

improve an existing test set [1]. It works based on the notion of mutants, where each

mutant is created by making a simple modification on the program under test. The set

of possible modifications are defined by the mutation operators that are defined for the

programming language of the target program. If there is a test set that the program has

successfully executed on, then mutation testing can be applied to provide a measure of

the quality of that test set. This is performed by running each mutant M on the test cases

to investigate whether the test cases are powerful enough to detect the injected fault,

i.e. the mutation. If the result of running the mutant on a test cases is different from the

109

www.manaraa.com

2 Mahdi Houshmand, Samad Paydar

result of running the original program on that test case, then the test case has been able

to distinguish, or kill, that mutant. The greater ratio of the mutants of the program are

killed by the test set, the higher is the score of that test set. Finally, if there remains any

live mutant, i.e. mutants that are not killed by any test case, then there are two possible

cases for each live mutant: 1) whether this is a sign of the weakness of the test set, or

2) the mutant is an equivalent mutant, i.e. the corresponding mutation has made a syntax

change without changing the semantic, and hence, the mutant cannot be killed by any

test case.

When applying mutation testing, a method is necessary to distinguish which of the

above cases holds for a live mutant. Without differentiating these two cases, it is pos-

sible that the test case designer wastes his time and effort in trying to find a test case

for killing an equivalent mutant, which is actually not killable. Further, an equivalent

mutant may cause the quality of the test set to be underestimated.

While mutation testing has been empirically proven to be able to simulate real-world

programming errors [24], and hence to be an effective method for evaluating and im-

proving test sets, there some non-negligible impediments towards its application in in-

dustrial software. The first problem is that mutation testing is a costly method, since the

number of possible mutants, even for a relatively small program is usually high. Creat-

ing the mutants, compiling and executing them over the test cases and comparing the

execution result usually requires noticeable time and computation resources.

Another problem is the equivalent mutants introduced before. Consequently, differ-

ent approaches have been introduced during the last two decades for addressing this

problem by employing different techniques like machine learning [14], logical con-

straint solving [15], data flow pattern analysis [8], gamification [17], program slicing

[10] and code similarity measures [13]. One of the approached introduced recently, is

the Trivial Compiler Equivalence (TCE) approach [12] which is a simple, fast and ef-

fective technique for detecting equivalent mutants.

The TCE technique actually relies on the optimizations performed by the compiler,

and it tries to determine equivalence of a mutant by comparing it with the original pro-

gram, in their binary, i.e. compiled, format. TCE has been evaluated in [12] on C pro-

grams using the gcc compiler that is capable of performing different levels of optimi-

zations when compiling the program. The evaluations have shown that TCE is an ef-

fective method for equivalent mutant detection in C programs. Considering Java pro-

grams, however, TCE is not expected to perform noticeably, since the Java compiler

performs almost no specific optimization, and it leaves the optimizations to be per-

formed by Java Virtual Machine at runtime (JVM) [26]. We believe there is room for

evaluating the TCE technique on Java programs. Hence, in this paper, we experimen-

tally evaluate performance of TCE on Java programs, and further, we introduce TCE+

as an extension of TCE which utilizes the ProGuard1 Java obfuscator in addition to the

compiler to address the lack of compiler optimizations.

The rest of the paper is organized as follows. Section 2 briefly reviews the related

works. In Section 3, the experimental evaluation of the TCE and TCE+ techniques on

Java programs is discussed. Finally, Section 4 concludes the paper.

1 http://proguard.sourceforge.net/

110

www.manaraa.com

TCE+: an Extension of the TCE Method for Detecting Equivalent Mutants in Java Programs

3

2 Related Work

In order to address the equivalent mutant problem in the mutation testing domain,

different approaches have been proposed during the last two decades. This problem, in

its general form is an undecidable problem [2, 3] and therefore it is not expected to be

able to find an automated method that can solve every instance of this problem correctly

and completely. As a result, some of the proposed approaches employ heuristics or limit

the characteristics of the program under study, for instance restricting the number of

iterations of the loops [25]. A literature review on the approaches for tackling with the

equivalent mutant problem is provided in [4], where it is concluded that the equivalent

mutant detection techniques are still “far from perfect”.

Some works attempt to deterministically determine whether a specific mutant is

equivalent or not. For instance, in [8, 18] a set of 9 data flow patterns is introduced that

result in equivalent mutants. In addition, a framework is proposed which uses static

analysis of data flow to check each mutant of a program against these patterns. If a

mutant follows one of the predefined patterns, then it is equivalent, otherwise it is con-

sidered to be non-equivalent. As another example, [15] introduces a technique that ex-

tracts a set of logical constraints from a mutant such that solving those constraints

proves that the mutant is equivalent to the original program. Then, the constraints are

given to a constraint solver tool for the purpose of detecting equivalent mutants. The

method assumes certain characteristics on the mutants which limits applicability of the

method (e.g. recursive functions are not supported). A similar approach based on con-

straint solving techniques is also introduced in [16].

Some works implicitly use the idea that for an undecidable problem, it is not possible

to provide a complete automated solution and hence human intervention is unavoidable.

Therefore, they try to help the human experts in analyzing the mutants and in making

decision about their equivalence. This help can be provided in form of identifying the

mutants that are more likely to be equivalent. Therefore, these methods follow a inexact

approach and generate a recommended list of mutants, ordered by their equivalence

probability, that need to be manually analyzed by the human expert to make the final

decision. For instance, in [11], the idea is that the probability that a mutant is not equiv-

alent is related to how its coverage on a specific test set differs from the coverage of

the original program. In other words, the greater the coverage is affected, the lower is

the probability of the mutant being equivalent. A similar approach for determining

equivalent mutants based on the coverage impact is also proposed in [6, 5]. Machine

learning techniques are also used in some works like [14] to provide a probabilistic

approach to detection of equivalent mutants.

Another example of the works that count on human involvement for detection of

equivalent mutants is [17] that uses gamification technique. It introduces a two-player

game in which one player tries to create mutants that are hard to kill, and the other one

tries to introduce test cases that kill the mutants. The game indirectly can contribute to

detecting mutants that are more likely to be equivalent.

Another group of works try to avoid creation of equivalent mutants by more ad-

vanced mutation generation techniques. For instance, [19] proposes to consider the fact

111

www.manaraa.com

4 Mahdi Houshmand, Samad Paydar

that different mutation operators perform differently from the point of view of the dif-

ficulty of killing their resulting mutants. This can be employed to selectively use muta-

tion operators that less frequently create equivalent mutants. Another group of works

have shown that using higher order mutants instead of first-order mutants can reduce

the number of equivalent mutants generated for a program [9, 20, 21, 22].

Other techniques that have been used for exact equivalent mutant detection include

code similarity measures and clone detection techniques [13], program slicing tech-

niques [10], co-evolution algorithms [7].

An interesting approach that is recently proposed for detection of the equivalent mu-

tants is the TCE approach [12], which uses a very simple and straightforward technique.

TCE works based on the idea that the advanced optimizations performed by a compiler

can remove some type of the mutations that have not affected the semantic of the pro-

gram, and hence if the equivalent mutant is compiled, the result of compiling can be

the same as the result of compiling the original program. It is demonstrated through

experimental evaluations that the TCE technique is successful in effectively detecting

equivalent mutants of a C program using the gcc compiler optimizations. However,

since the Java compilers generally do not perform noticeable optimizations, the perfor-

mance of TCE on Java programs needs to be investigated. As a result, current paper

proposes TCE+ technique as an extension of TCE that utilizes ProGuard for the purpose

of optimizing Java code. In addition to performing different optimizations, e.g. dead

code removal, unused variable removal and peephole optimizations, ProGuard is also

able to obfuscate, shrink and pre-verify Java byte codes. However, TCE+ uses

ProGuard only for the purpose of optimizations and it does not use obfuscation or

shrinking capabilities of ProGuard. It is beyond the scope of this paper to describe the

optimization techniques employed by ProGuard or gcc, however, Table 1 briefly men-

tions some of the main optimizations performed by each of these tools.

In [12], TCE has been shown to be able to find, in addition to equivalent mutants,

the duplicated mutants, i.e. mutants that are equivalent to each other, but not necessarily

equivalent to the original program. Since there is no advantage in using two duplicated

mutants, it is interesting to be able to detect duplicated mutants. In this paper, we eval-

uate the TCE and TCE+ methods for the purpose of detecting equivalent and duplicated

mutants of Java programs.

Table 1. Some of the optmization techniques employed by the subject tools

Tool Optimization Techniques

gcc Compiler Dead Code Elimination, Transforming Conditional Jumps, Constant Folding, De-

Virtualization, Function Inlining, Predictive Commoning, Elimination of Useless

Null Pointer Checks, Peephole Optimization, Global Common Subexpression Elimi-

nation

ProGuard Dead Code Elimination, Peephole Optimization, Marking Classes as Final,

Variable Allocation Optimization, Method Inlining, Return Value Propagation, Re-

moving Write-only Fields

112

www.manaraa.com

TCE+: an Extension of the TCE Method for Detecting Equivalent Mutants in Java Programs

5

3 Experimental Study

In this section, the experimental evaluation of the TCE and TCE+ approaches over

Java programs is discussed. First, the research questions are introduced and then, dif-

ferent elements of the experiments are described. Finally, the results of the experiments

are discussed.

3.1 Research Questions

Since the TCE approach has been shown to be both effective and efficient in detect-

ing equivalent and duplicated mutants in C programs, the main research question this

paper seeks to answer is:

RQ. How do the TCE and TCE+ approaches perform on Java programs?

To answer this question, two more specific research questions are introduced:

RQ1. How effective are the TCE and TCE+ approaches at detecting equivalent and

duplicated mutants in Java programs?

To answer this question, the number of equivalent and duplicated mutants detected

by the TCE and TCE+ techniques, and also the ratio of the detected equivalent mutants

to the existing equivalent mutants is reported.

RQ2. How efficient is TCE+ for the purpose of equivalent mutant detection?

This question is answered by computing the execution time of the TCE+ approach

to see if it is efficient enough to be used in practice. While we have not evaluated TCE+

on large programs, we believe that the efficiency of the technique for the large programs

can be estimated based on the results obtained for the small programs.

3.2 Dataset and Golden Standard

For the purpose of the experimental evaluations, first, a dataset is prepared including

5 java programs, and then, for each program, its mutants are created by the MuJava

mutation testing tool [23]. Table 2 shows the name of each program, its size in terms

of physical Source Line of Code (SLOC) and the number of its mutants. The mutation

operators that MuJava has applied on the subject programs are mentioned in Table 3.

In addition, a golden standard is created by manually checking each mutant of the

subject programs to determine whether it is equivalent to the original program. This

manual analysis is performed separately by three experts who have had more than 10

years of experience in object oriented programming in Java. After each expert has fin-

ished his job, the results have been compared so that any possible conflict is resolved.

Actually, there were 7 such cases that needed the experts to discuss with each other to

agree on the result.

113

www.manaraa.com

6 Mahdi Houshmand, Samad Paydar

Table 2. Dataset used in the experiments

Program Subject Program Physical SLOC Number of Mutants

P1 BubbleSort 15 111

P2 Bisect 25 189

P3 Triangle 46 456

P4 QuickSort 50 341

P5 java.util.StringTokenizer 174 772

Table 3. Mutation operators applied by MuJava on the subject programs

Operator Operator Definition

AODS: Short-cut Arithmetic Operator Deletion {(x,remove(x)) | x ∈ {++, --}}

AODU: Unary Arithmetic Operator Deletion {(-v, v)}

AOIS: Short-cut Arithmetic Operator Insertion {(v, --v), (v, v--), (v, ++v), (v, v++)}

AOIU: Unary Arithmetic Operator Insertion {(v, -v)}

AORB: Binary Arithmetic Operator Replacement {(x,y) | x,y ∈ {+, -, *, /, %} ∧ x ≠ y}

AORS: Shortcut Arithmetic Operator Replacement {(x,y) | x,y ∈ {++, --} ∧ x ≠ y}

ASRS: Shortcut Assignment Operator Replacement {(x,y) | x,y ∈ {+=, -=, *=, /=, %=} ∧ x ≠ y}

CDL: Constant DeLetion
{(op c, remove(op c)) | op ∈ {+, -, *, /, %, >,

>=, <, <=}}

COD: Conditional Operator Deletion {(!(e), e) | e ∈ {if(e), while(e), for(s; e; s)}}

COI: Conditional Operator Insertion {(e, !(e)) | e ∈ {if(e), while(e), for(s; e; s)}}

COR: Conditional Operator Replacement {(x,y) | x,y ∈ {&&, ||, ^} ∧ x ≠ y}

LOI: Logical Operator Insertion {(v, ~v)}

ODL: Operator DeLetion

{(v op, remove(v op)), (op v, remove(op v)) |

op ∈ {+, -, *, /, %, <, <=, >, >=}}, {(v++, v),

(v--, v) , (--v, v) , (++v, v) | op ∈ {++, --}}

ROR: Relational Operator Replacement {(x,y) | x,y ∈ {>, >=, <, <=, ==, !=} ∧ x ≠ y}

SDL: Statement DeLetion {(s, remove(s))}

VDL: Variable DeLetion
{(v [op], remove(v [op])) | op ∈ {+, -, *, /, %,

++, --, <, <=, >, >=}

3.3 Experimental Environment

All the experiments are performed on a PC with Microsoft Windows 7 operating

system, Intel Core i5-4400 processor and 8GB RAM. Further, we have used the Ora-

cle’s Java compiler javac version 1.8.0_60 to compile the programs and the mutants,

and also ProGuard 5.3 to optimize the compilation results. Finally, for the purpose of

comparing the binary files, the Windows utility program FC is used with the parameters

/B and /LB1.

3.4 Experiments

To answer the research questions, a set of four experiments is designed. The first

two experiments respectively evaluate the TCE and TCE+ approaches for the purpose

of equivalent mutant detection, and the second two experiments focus on the detection

of duplicated mutants. The processes performed in these experiments for each subject

program are shown in Fig. 1 and Fig. 4.

114

www.manaraa.com

TCE+: an Extension of the TCE Method for Detecting Equivalent Mutants in Java Programs

7

In the first experiment, for each subject program P, P is compiled to Pclass and each

mutant M of P is compiled to Mclass. Then each compiled mutant Mclass is compared to

the Pclass. If no difference is identified in this comparison, it is considered that TCE has

determined the corresponding mutant as an equivalent mutant.

The second experiment evaluates the TCE+ approach by including an optimization

phase before the comparison step. In order to perform the optimization, first a jar file is

created from the compiled file, i.e. Pclass or Mclass. The jar file is then given to ProGuard

to do the optimizations. The resulting jar file is then decompressed to extract the opti-

mized compiled file which then goes through the binary comparison.

In the third experiment, each compiled mutant of the program is compared to all

other compiled mutants of that program that have the same file size. If there is no dif-

ference between the corresponding binary files, those two mutants are added as a pair

to the list of duplicated mutants. After processing all the mutants, a simple algorithm

shown in Fig. 3 is used to determine the list of mutants that can be removed.

The fourth experiment is very similar to the third experiment and the only difference

is that it compares the optimized version of the compiled mutants which are created by

the process described for the second experiment.

Input: P (original program)

Output: EM (list of the equivalent mutants of P)

//compile step

compile P to Pclass

for each mutant M of P

 compile M to Mclass

//comparison step

for each mutant M of P

 result = compare Mclass to Pclass

 if (result == 'no difference')

 add M to EM

return EM

Fig. 1. Process of experiment 1: TCE for equivalent mutant detection

Input: P (original program)

Output: EM (list of the equivalent mutants of P)

//compile step

compile P to Pclass

for each mutant M of P

 compile M to Mclass

//optimization step

convert Pclass to Pjar

optimize Pjar to Pjar,op

115

www.manaraa.com

8 Mahdi Houshmand, Samad Paydar

extract Pclass,op from Pjar,op

Pclass = Pclass,op

for each mutant M of P

 convert Mclass to Mjar

 optimize Mjar to Mjar,op

 extract Mclass,op from Mjar,op

 Mclass = Mclass,op

//comparison step

for each mutant M of P

 result = compare Mclass to Pclass

 if (result == 'no difference')

 add M to EM

return EM

Fig. 2. Process of experiment 2: TCE+ for equivalent mutant detection

Input: P (original program)

Output: DM (list of the removable duplicated mutants of

P)

//compile step

for each mutant M of P

 compile M to Mclass

//comparison step

Pairs: empty list

for each mutant M1 of P

 for each mutant M2 of P

 if (M1 != M2

 and filesize(M1class) == filesize(M2class))

 result = compare M1class to M2class

 if (result == 'no difference')

 add pair(M1, M2) to Pairs

//removal step

sort Pairs based on the first element of the pairs

for each Pair in Pairs

 M1 = first element of Pair

 M2 = second element of Pair

 if not (DM contains M1)

 add M2 to DM

return DM

116

www.manaraa.com

TCE+: an Extension of the TCE Method for Detecting Equivalent Mutants in Java Programs

9

Fig. 3. Process of experiment 3: TCE for duplicated mutant detection

Input: P (original program)

Output: DM (list of the removable duplicated mutants of

P)

//compile step

for each mutant M of P

 compile M to Mclass

//optimization step

for each mutant M of P

 convert Mclass to Mjar

 optimize Mjar to Mjar,op

 extract Mclass,op from Mjar,op

 Mclass = Mclass,op

//comparison step

Sort mutations based on their file size

for each mutant M1 of P

 if (M1 in DM)

 continue;

 for each mutant M2 of P

 if (M2 in DM)

 continue;

 if (M1 != M2

 and filesize(M1class) == filesize(M2class))

 result = compare M1class to M2class

 if (result == 'no difference')

 add M2 to DM

 else

 break;

return DM

Fig. 4. Process of experiment 4: TCE+ for duplicated mutant detection

3.5 Result Analysis

The results of the first two experiments are shown in Table 4. As it is shown in this

table, TCE approach has not detected any equivalent mutant in the subject programs.

Therefore, it can be concluded that since the Java compiler does not perform noticeable

optimizations [26], applying TCE on Java programs is not effective for detecting equiv-

alent mutants. However, the TCE+ technique, which compensates the limitation of the

Java compiler by utilizing ProGuard’s optimizations, has identified some equivalent

mutants for each of the subject programs. Therefore, TCE+ has been able to address

117

www.manaraa.com

10 Mahdi Houshmand, Samad Paydar

the shortcomings of the TCE method. However, the number of detected equivalent mu-

tants is small and at the best case, i.e. the Bisect program, it accounts for only 7% of all

the mutants. The worst case is also the BubbleSort program that the detected equivalent

mutants are only 2% of all the mutants.

In order to judge the effectiveness of the TCE+ approach, it is required to know the

ratio of the detected equivalent mutants to all the existing equivalent mutants. There-

fore, the results of the first two experiments have been compared with the golden stand-

ard. As shown in the last column of Table 4, TCE+ has been able to detect from 18%

to 100% of all the existing equivalent mutants. It has missed 9, 2 and 7 equivalent mu-

tants respectively for the BubbleSort, QuickSort and StringTokenizer programs. For the

other two programs, i.e. Bisect and Triangle, all the existing equivalent mutants have

been found by TCE+.

Based on these results, we conclude that TCE+ is generally effective and it is suc-

cessful in detecting a good ratio of the existing equivalent mutants. However, it is in-

teresting to analyze the detected and undetected equivalent mutants based on their mu-

tation operators.

The distribution of the mutation operators over all the generated mutants is shown

in

Table 5. The top-3 mutation operators that have created the greatest proportion of

the mutants are AOIS, ROR and SDL, which have created respectively 33%, 20% and

10% of all the mutants. There are some operators like AOSE and AODU that have

negligible contribution to the number of mutants created.

In Table 6, the distribution of the mutation operators over all the existing equivalent

mutants is shown. An interesting point is that the AOIS operator which has created

about 33% of all the mutants is also responsible for creating about 77% of all the equiv-

alent mutants in the golden standard. Further, the ROR operator has created about 14%

of all the equivalent mutants. From another point of view, about 13% of the mutants

created by the AOIS operator have been equivalent. This value for the ROR operator

has been about 4%. This means that the performance of the TCE+ technique over these

two mutation operators is of greater importance, compared to other mutation operators.

Table 4. Results of Experiments 1 and 2: Detecting Equivalent Mutants

Program

Number of Detected

Equivalent Mutants

Percentage of Detected

Equivalent Mutants to All

Mutants

Percentage of Detected Equiva-

lent Mutants to All Existing

Equivalent Mutants

TCE TCE+ TCE TCE+ TCE TCE+

P1 0 2 0 2 0 18

P2 0 14 0 7 0 100

P3 0 23 0 5 0 100

P4 0 10 0 3 0 83

P5 0 34 0 4 0 83

118

www.manaraa.com

TCE+: an Extension of the TCE Method for Detecting Equivalent Mutants in Java Programs

11

Table 5. Distribution of the Mutation Operators Over All the Mutants

Program

Mutation Operator

A
O

D
S

A
O

D
U

A
O

IS

A
O

IU

A
O

R
B

A
O

R
S

A
S

R
S

C
D

L

C
O

D

C
O

I

C
O

R

L
O

I

O
D

L

R
O

R

S
D

L

V
D

L

P1 30 3 16 2 4 3 11 8 19 10 5

P2 80 13 32 2 3 16 19 14 10

P3 128 11 36 3 24 14 43 32 119 31 15

P4 2 108 18 36 6 8 9 40 20 55 28 11

P5 2 262 33 7 20 6 39 20 80 33 163 100 7

Total 2 2 608 78 120 15 20 17 6 78 34 174 109 375 183 48

Ratio (%) 1 < 1 < 1 33 4 6 1 1 1 < 1 4 2 9 6 20 10 3

1 percentage to all the mutants

The distribution of the mutation operators over all the equivalent mutants that are

found by TCE+ is shown in Table 7. Comparing this table with Table 6 shows that

TCE+ has successfully detected all the equivalent mutants created by the AOIS opera-

tor, which account for about 77% of all the equivalent mutants. Hence, considering the

ratio of AOIS-generated equivalent mutants, it can be concluded that the TCE+ ap-

proach is an effective method for detection of equivalent mutants in Java programs.

However, it is also important to note that TCE+ has not detected any of the 14 equiva-

lent mutants created by the ROR operator (5 for BubbleSort, 2 for QuickSort and 7 for

StringTokenizer). It also has missed 4 other equivalent mutants of BubbleSort, 2 cre-

ated by the AORB operator, 1 by ODL and 1 by the CDL operator.

Regarding detection of the duplicated mutants, the results of the third and the fourth

experiments are presented in Table 8. This table shows that TCE and TCE+ have iden-

tified respectively from 8% to 14% and from 13% to 23% of the mutants of the subject

programs as being duplicated. Since the duplicated mutants do not contribute to the

mutation testing results, they can be removed from the mutants. Considering all the five

subject programs, TCE and TCE+ have identified respectively 9% and 16% of all the

mutants as being duplicated. As a result, we conclude that while TCE+ noticeably out-

performs TCE, both approaches are effective in detecting duplicated mutants.

Table 6. Distribution of the Mutation Operators Over the Existing Equivalent Mutants

Program

Mutation Operator

A
O

D
S

A
O

D
U

A
O

IS

A
O

IU

A
O

R
B

A
O

R
S

A
S

R
S

C
D

L

C
O

D

C
O

I

C
O

R

L
O

I

O
D

L

R
O

R

S
D

L

V
D

L

P1 2 2 1 1 5

P2 12 2

P3 20 1 1 1

P4 10 2

P5 34 7

Total 0 0 78 3 2 0 0 1 0 0 0 0 2 14 0 1

Ratio (%) 1 0 0 77 3 2 0 0 1 0 0 0 0 2 14 0 1

1 Percentage to Existing Equivalent Mutants

119

www.manaraa.com

12 Mahdi Houshmand, Samad Paydar

Table 7. Distribution of the Operators Over the Equivalent Mutants Detected by TCE+

Program

Mutation Operator

A
O

D
S

A
O

D
U

A
O

IS

A
O

IU

A
O

R
B

A
O

R
S

A
S

R
S

C
D

L

C
O

D

C
O

I

C
O

R

L
O

I

O
D

L

R
O

R

S
D

L

V
D

L

P1 2

P2 12 2

P3 20 1 1 1

P4 10

P5 34

Total 0 0 78 3 0 0 0 0 0 0 0 0 1 0 0 1

Ratio (%) 1 0 0 94 4 0 0 0 0 0 0 0 0 1 0 0 1

1 Percentage to All Equivalent Mutants Detected by TCE+

Table 8. Results of Experiments 3 and 4: Detecting Duplicated Mutants

Program

Number of Detected Du-

plicated Mutants

Percentage of Detected Duplicated Mu-

tants to All Mutants

TCE TCE+ TCE TCE+

P1 15 25 14 23

P2 16 31 8 16

P3 52 89 11 20

P4 34 59 10 17

P5 60 99 8 13

An interesting point is that while TCE has not detected any equivalent mutant, but it

has detected non-negligible number of duplicated mutants. Further analysis of the re-

sults reveals that the detected duplicated mutants are not a result of the optimizations

made by TCE, but they are resulted from the fact that applying some MuJava mutation

operators on some program statements may create exactly the same syntactic changes.

In other words, for each pair of duplicated mutants detected by TCE, both mutants are

syntactically-equal. An example pair is shown in Table 9. While TCE+ has detected all

the duplicated mutants found by TCE, it has also detected other results which are syn-

tactically different but semantically duplicated. An example is shown in Table 10.

Another interesting point is that, as shown in Table 11, 44% of all the duplicated

mutants detected by TCE are created by the ROR operator. The other 23% are associ-

ated with the VDL operator. Only about 1% of the detected duplicated mutants are

results of the AOIS operator. The results for the TCE+ technique are also presented in
1 Percentage to All Duplicated Mutants Detected by TCE

Table 12. This table shows that, compared to TCE, the TCE+ technique is able to

detect the duplicated mutants that are created by a wider set of mutation operators. Ac-

tually, TCE+ has detected duplicated mutants of type AOI, AORB, CDL and LOI op-

erators, of which none is detected by the TCE method.

Finally, to answer RQ1, we conclude that TCE is not effective for detecting equiva-

lent mutants of Java programs, but it can effectively detect the duplicated mutants. Fur-

ther, TCE+ is effective for detecting both equivalent and duplicated mutants.

120

www.manaraa.com

TCE+: an Extension of the TCE Method for Detecting Equivalent Mutants in Java Programs

13

Table 9. An Example Duplicated Mutant Detected by TCE

Original Statement Mutant by ODL Operator Mutant by CDL Operator

x = (M + x) / 2; x = M + x; x = M + x;

Table 10. An Example Duplicated Mutant Detected by TCE+ but Missed by TCE

Original Statement Mutant by AOIS Operator Mutant by AOIS Operator

public void setEpsilon(double

epsilon) {

 this.mEpsilon = epsilon; }

public void setEpsilon(double

epsilon) {

 this.mEpsilon = epsilon--; }

public void setEpsilon(double

epsilon) {

 this.mEpsilon = epsilon++; }

Table 11. Distribution of the Operators Over the Duplicated Mutants Detected by TCE

Program

Mutation Operator

A
O

D
S

A
O

D
U

A
O

IS

A
O

IU

A
O

R
B

A
O

R
S

A
S

R
S

C
D

L

C
O

D

C
O

I

C
O

R

L
O

I

O
D

L

R
O

R

S
D

L

V
D

L

P1 4 3 3 5

P2 4 2 10

P3 3 27 7 15

P4 2 10 9 5 8

P5 8 39 11 2

Total 0 0 2 0 0 0 0 0 0 0 0 0 29 78 28 40

Ratio (%) 1 0 0 1 0 0 0 0 0 0 0 0 0 16 44 16 23

1 Percentage to All Duplicated Mutants Detected by TCE

Table 12. Distribution of the Operators Over the Duplicated Mutants Detected by TCE+

Program

Mutation Operator

A
O

D
S

A
O

D
U

A
O

IS

A
O

IU

A
O

R
B

A
O

R
S

A
S

R
S

C
D

L

C
O

D

C
O

I

C
O

R

L
O

I

O
D

L

R
O

R

S
D

L

V
D

L

P1 1 4 4 4 4 3 5

P2 13 2 4 2 10

P3 19 1 3 1 1 4 38 7 15

P4 14 6 6 10 10 5 8

P5 34 8 43 12 2

Total 0 0 81 3 13 0 0 11 0 0 0 1 30 95 29 40

Ratio (%) 1 0 0 27 1 4 0 0 4 0 0 0 0 10 31 10 13

1 Percentage to All Duplicated Mutants Detected by TCE+

In order to evaluate efficiency of TCE+ for detecting equivalent mutants, its execu-

tion time for different steps, i.e. 1) compiling the mutants, 2) optimization of the com-

piled mutants, and 3) comparison of the optimization results, is separately measured for

each subject program. The process of detecting duplicated mutants also includes the

first two steps, but in the third step, it compares the optimization results differently.

Therefore, the execution time of this step is also measured to evaluate efficiency of

TCE+ for detecting duplicated mutants. The results are presented in Table 13.

121

www.manaraa.com

14 Mahdi Houshmand, Samad Paydar

As shown in Table 13, the execution times of detecting equivalent mutants and du-

plicated mutants do not differ noticeably, and they are about 1 second per mutant.

Therefore, to answer RQ2, we conclude that TCE+ can be considered as an efficient

method. Further, the comparison times, both for equivalent and duplicated mutants, are

negligible. However, the optimization time is about 2-3 times the compile time. It is

worth noting that the compile time is an inherent overhead of mutation testing, since in

mutation testing, each mutant should be compiled and executed against the test cases.

Therefore, the overhead imposed by TCE+ is the optimization time. Considering the

fact that TCE+ can effectively detect equivalent and duplicate mutants, and these mu-

tants do not need to be executed over the test cases, it means that TCE+ reduces the

cost of mutation testing by reducing the number of mutants that need to be run and

specially by removing the mutants that due to their equivalence, can waste the time of

the test case designers. Hence, we believe the overhead of optimization time which

involves CPU cycles can be considered as acceptable by the reduction it provides in

required human effort. Consequently, we conclude that TCE+ is cost effective.

4 Conclusion

In this paper, the performance of TCE technique for detecting equivalent mutants in

Java programs is evaluated. As the experimental evaluations have demonstrated, TCE

has not detected any equivalent mutant in the subject programs and hence it cannot be

considered to effective. To address this problem, current paper has proposed the TCE+

technique which extends TCE by utilizing an obfuscator like ProGuard, capable of per-

forming some optimizations on Java programs.

The experimental evaluations show that while there are mutation operators like ROR

for which TCE+ performance is weak, there are also operators like AOIS that TCE+ is

able to find all of its equivalent mutants. Considering the contribution of each operator

to the number of equivalent mutants of a typical program, TCE+ can be considered to

be an effective and efficient method for detecting both equivalent and duplicated mu-

tants for Java programs.

Table 13. Execution Time of TCE+ for Detecting Equivalent and Duplicated Mutants

Program

Execution Time (sec.)

Compile Optimization

Comparison for

Detecting

Equivalent Mu-

tants

Comparison

for Detecting

Duplicated

Mutants

Total for De-

tecting Equiva-

lent Mutants

Total for

Detecting

Duplicated

Mutants

P1 36 68 1 1 105 105

P2 57 124 3 1 184 182

P3 137 289 6 3 432 429

P4 101 188 5 2 294 291

P5 235 617 12 5 864 857

122

www.manaraa.com

TCE+: an Extension of the TCE Method for Detecting Equivalent Mutants in Java Programs

15

Current paper has investigated performance of TCE+ on small programs. Hence, it

is required to perform similar experiments on larger Java programs to see how the per-

formance of TCE+ changes as the program size increases. A challenge in this regard is

preparation of the golden standard, since for large programs, the number of mutants is

noticeable and it needs considerable effort to build a reliable golden standard. This is a

main direction of our future work. Further, more precise analysis of the behavior of

TCE+ on different mutation operators is an important job that we have scheduled for

our future works. The results of such analysis will provide insights on possible im-

provements on ProGuard from the specific point of view of equivalent mutant detec-

tion.

5 References

1. Jia, Yue, and Mark Harman. "An analysis and survey of the development of mutation testing."

IEEE transactions on software engineering 37.5 (2011): 649-678.

2. Budd, Timothy A., and Dana Angluin. "Two notions of correctness and their relation to test-

ing." Acta Informatica 18.1 (1982): 31-45.

3. Offutt, A. Jefferson, and Jie Pan. "Automatically detecting equivalent mutants and infeasible

paths." Software testing, verification and reliability 7.3 (1997): 165-192.

4. Madeyski, Lech, et al. "Overcoming the equivalent mutant problem: A systematic literature

review and a comparative experiment of second order mutation." IEEE Transactions on Soft-

ware Engineering 40.1 (2014): 23-42.

5. Schuler, David, and Andreas Zeller. "Covering and uncovering equivalent mutants." Software

Testing, Verification and Reliability 23.5 (2013): 353-374.

6. Papadakis, Mike, and Yves Le Traon. "Mutation testing strategies using mutant classifica-

tion." Proceedings of the 28th Annual ACM Symposium on Applied Computing. ACM, 2013.

7. Adamopoulos, Konstantinos, Mark Harman, and Robert M. Hierons. "How to overcome the

equivalent mutant problem and achieve tailored selective mutation using co-evolution." Ge-

netic and evolutionary computation conference. Springer Berlin Heidelberg, 2004.

8. Kintis, Marinos, and Nicos Malevris. "Using data flow patterns for equivalent mutant detec-

tion." Software Testing, Verification and Validation Workshops (ICSTW), 2014 IEEE Sev-

enth International Conference on. IEEE, 2014.

9. Jia, Yue, and Mark Harman. "Higher order mutation testing." Information and Software Tech-

nology 51.10 (2009): 1379-1393.

10. Hierons, Rob, Mark Harman, and Sebastian Danicic. "Using program slicing to assist in the

detection of equivalent mutants." Software Testing, Verification and Reliability 9.4 (1999):

233-262.

11. Schuler, David, and Andreas Zeller. "(Un-) Covering Equivalent Mutants." 2010 Third Inter-

national Conference on Software Testing, Verification and Validation. IEEE, 2010.

12. Papadakis, Mike, et al. "Trivial compiler equivalence: A large scale empirical study of a sim-

ple, fast and effective equivalent mutant detection technique." 2015 IEEE/ACM 37th IEEE

International Conference on Software Engineering. Vol. 1. IEEE, 2015.

13. Kintis, Marinos, and Nicos Malevris. "Identifying more equivalent mutants via code similar-

ity." 2013 20th Asia-Pacific Software Engineering Conference. Vol. 1. IEEE, 2013.

14. Vincenzi, Auri Marcelo Rizzo, et al. "Bayesian-learning based guidelines to determine equiv-

alent mutants." International Journal of Software Engineering and Knowledge Engineering

12.06 (2002): 675-689.

123

www.manaraa.com

16 Mahdi Houshmand, Samad Paydar

15. Nica, Simona, and Franz Wotawa. "Using constraints for equivalent mutant detection." arXiv

preprint arXiv:1207.2234 (2012).

16. Just, René, Michael D. Ernst, and Gordon Fraser. "Using state infection conditions to detect

equivalent mutants and speed up mutation analysis." arXiv preprint arXiv:1303.2784 (2013).

17. Rojas, José Miguel, and Gordon Fraser. "Code Defenders: A Mutation Testing Game." The

11th International Workshop on Mutation Analysis. IEEE. 2015.

18. Kintis, Marinos, and Nicos Malevris. "MEDIC: A static analysis framework for equivalent

mutant identification." Information and Software Technology 68 (2015): 1-17.

19. Yao, Xiangjuan, Mark Harman, and Yue Jia. "A study of equivalent and stubborn mutation

operators using human analysis of equivalence." Proceedings of the 36th International Con-

ference on Software Engineering. ACM, 2014.

20. Harman, Mark, Yue Jia, and William B. Langdon. "A manifesto for higher order mutation

testing." Software Testing, Verification, and Validation Workshops (ICSTW), 2010 Third In-

ternational Conference on. IEEE, 2010.

21. Nguyen, Quang Vu, and Lech Madeyski. "Searching for strongly subsuming higher order mu-

tants by applying multi-objective optimization algorithm." Advanced Computational Methods

for Knowledge Engineering. Springer International Publishing, 2015. 391-402.

22. Omar, Elmahdi, Sudipto Ghosh, and Darrell Whitley. "Constructing subtle higher order mu-

tants for Java and AspectJ programs." 2013 IEEE 24th International Symposium on Software

Reliability Engineering (ISSRE). IEEE, 2013.

23. Ma, Yu-Seung, Jeff Offutt, and Yong-Rae Kwon. "MuJava: a mutation system for Java." Pro-

ceedings of the 28th international conference on Software engineering. ACM, 2006.

24. Just, René, et al. "Are mutants a valid substitute for real faults in software testing?." Proceed-

ings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software En-

gineering. ACM, 2014.

25. Weitao, Wang, and Hirohide Haga. "Improvement of Equivalent Mutant Detection Using

Loop Count Restriction." The International Conference on Software Engineering, Mobile

Computing and Media Informatics (SEMCMI2015). 2015.

26. Diehl, Stephan. "A formal introduction to the compilation of Java." Software-Practice and

Experience 28.3 (1998): 297-327.

124

www.manaraa.com

Using Swarm Intelligence to Generate Test Data for

Covering Prime Paths

 Atieh Monemi Bidgoli, Hassan Haghighi, Tahere Zohdi Nasab, Hamideh Sabouri

Department of Computer Science and Engineering, Shahid Beheshti University G. C., Tehran,

Iran

Abstract. Search-based test data generation methods mostly consider the branch

coverage criterion. To the best of our knowledge, only two works exist which propose

a fitness function that can support the prime path coverage criterion, while this criterion

subsumes the branch coverage criterion. These works are based on the Genetic Algo-

rithm (GA) while scalability of the evolutionary algorithms like GA is questionable.

Since there is a general agreement that evolutionary algorithms are inferior to swarm

intelligence algorithms, we propose a new approach based on swarm intelligence for

covering prime paths. We utilize two prominent swarm intelligence algorithms, i.e.,

ACO and PSO, along with a new normalized fitness function to provide a better ap-

proach for covering prime paths. To make ACO applicable for the test data generation

problem, we provide a customization of this algorithm. The experimental results show

that PSO and the proposed customization of ACO are both more efficient and more

effective than GA when generating test data to cover prime paths. Also, the customized

ACO, in comparison to PSO, has better effectiveness while has a worse efficiency.

Keywords: Search based test data generation, Prime paths, Swarm intelligence algo-

rithms, Ant colony optimization, Particle swarm optimization

1 Introduction

Software testing is an important activity of the software development life cycle that

aims at revealing failures in a Software Under Test (SUT). Among many activities that

help improving software quality, testing is still the most popular method, even though

being expensive. Although testing is usually done manually in industrial applications,

its automation has been a burgeoning interest of many researchers [1, 2]. Automation

reduces cost and time and improves the quality degree of the testing activity.

Test data generation is the activity of finding a set of input values with the aim of

detecting more failures of software systems. In the graph-based, structural approach to

test data generation, the given software artifact (e.g., the source code concerned in this

paper) is modeled as a graph. Control Flow Graph (CFG) is a graph that is obtained

from source code for this purpose. According to the graph based criteria, some parts of

the resulting graph should be covered by the test data. The simplest criteria are node

coverage, edge coverage, and edge-pair coverage. The edge-pair criterion can be logi-

cally extended to the Complete Path Coverage (CPC) criterion. Because of the possi-

bility of infinite number of test requirements, CPC is not practical for programs with

loops. To resolve this issue, some solutions have been proposed by researchers, includ-

ing a coverage criterion based on the prime path notion [4]. Unlike CPC, which is not

practical, Prime Path Coverage (PPC) is a practical criterion that subsumes all other

125

www.manaraa.com

graph-based, structural coverage criteria. Thus, in this paper, we consider PPC as the

coverage criterion.

The emphasis on the prime path coverage is due to the fact that covering prime paths

may reveal failures that cannot be detected using other criteria. For instance, Fig. 1

shows a sample program along with its CFG. It contains a fault in line 11 (i.e., c = 0)

which causes an exception (division by zero) in the second iteration of the existing loop.

Based on the test requirements represented in Table 1, we can reveal the failure if we

traverse path 7 which results when using the prime path coverage as the test criterion.

Other coverage criteria may never find this fault.

Fig. 1. a) The sample program b) The corresponding CFG

Table 1. Test paths according to node, edge and prime path coverage for the given example

Prime path Edge Coverage Node coverage

[1,2,3,5,6,7,9,10,6,11] [1,2,3,5,6,11] [1,2,3,5,6,11] 1

[1,2,3,5,6,7,8,10,6,11] [1,2,4,5,6,7,9,10,6,11] [1,2,4,5,6,7,9,10,6,11] 2

[1,2,4,5,6,11] [1,2,3,5,6,7,8,10,6,11] [1,2,4,5,6,7,8,10,6,11] 3

[1,2,3,5,6,11] 4

[1,2,4,5,6,7,9,10,6,7,8,10,6,11] 5

[1,2,4,5,6,7,8,10,6,7,9,10,6,11] 6

[1,2,4,5,6,7,9,10,6,7,9,10,6,11] 7

[1,2,4,5,6,7,8,10,6,7,8,10,6,11] 8

Test data generation is an expensive and time consuming activity. Therefore, de-

velopment of methods to automate this activity is necessary. One approach for auto-

matic test data generation is symbolic execution [6] that assigns symbolic values to

program parameters in order to formulate program paths in terms of logical constraints.

126

www.manaraa.com

These constraints should be solved to find values which cause the program to follow

specific paths. The main issue with this approach is that it is dependent on the capabil-

ities of constraint solvers. Constraint solvers either are unable to resolve complex con-

straints or resolve such constraints in a computationally expensive way. Loop-depend-

ent or array-dependent variables, pointer references and calls to external libraries whose

implementations are unknown also introduce issues for this approach.

Dynamic methods are another automatic approach which generate test data through

executing the SUT and determining the visited program locations via some form of

program instrumentation. Program instrumentation is done to trace run-time infor-

mation such as branch distance (detailed in Section 2). To do this, some extra statements

will be added inside the original program before every predicate. These statements

should not alter the behavior of the original program.

Using meta-heuristic algorithms is a category of dynamic methods called Search

Based Software Testing (SBST). To apply this approach, the input domain of the SUT

forms the search space, and a fitness function is defined which evaluates and scores

different inputs to the SUT according to the given test criteria and test requirements.

All the information needed by a meta-heuristic algorithm (e.g., if the given test data

lead to traversing a specific location of the program) can be extracted from the execu-

tion of the instrumented SUT, accordingly.

The fitness function plays an important role in successful and efficient searches in

meta-heuristic algorithms. A well-defined fitness function improves the likelihood of

finding a proper solution. It also can result in consuming fewer system resources [7].

The fitness functions that have already been proposed for search based test data gener-

ation methods are divided into two categories: Branch Predicate Distance Function

(BPDF) and Approximation level, which are described in Section 2.

As shown in Fig. 1, in order to cover prime paths, the test data generation method

should be capable to cover those test paths that pass through loops one or more times.

Therefore, a search-based test data generation method which regards the prime path

coverage criterion needs an appropriate fitness function. To the best of our knowledge,

only two works [8, 22] exist proposing fitness functions that can support the prime path

coverage criterion. We refer to these fitness functions as NEHD [8] and BP1 [22]. How-

ever, the mentioned works are based on GA, while swarm intelligence algorithms have

shown considerable results in the optimization problems [20].

NEHD has been designed to measure the Hamming distance from the first order to

the nth order between two paths to consider the notion of sequences of branches. It re-

sults in time intensive calculations for long paths because the fitness function must

continuously search for the number of combinations of branches from 1 to n order at

each stage. Therefore, according to [21] the method of [8] has a poor efficiency.

BP1 is the linear combination of two measures, BPDF and Approximation level.
BDPF is normalized in the range [0,1] but the Approximation level is not normalized

despites the importance of normalization [19]. In this situation, normalization is essen-

tial to consider equal weights for the two measures of the fitness function (BPDF and

Approximation level) for guiding individuals in the search process (Section 4).

 We propose a new search-based approach for test data generation which aims at

covering prime paths more effectively and more efficiently through two contributions:

(1) we apply Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO)

as two prominent swarm intelligence algorithms for test data generation, and (2) we

127

www.manaraa.com

propose a new normalized fitness function. ACO is a powerful method for finding

shortest paths in dynamic networks. But, it is not always straightforward to apply it to

other problems such as function optimization or searching n-dimensional spaces [10].

Thus, we should adapt ACO for the test generation problem in this paper.

The results of our experiments show that the customized ACO and PSO have better

average coverage and better average time in comparison to GA. Also, ACO leads to a

better average coverage comparing with PSO while, it has a worse average time.

The rest of the paper is structured as follows. In the next section, we review the basic

ACO, PSO, and the current fitness functions for test data generation. The third section

provides a brief overview of some related works. In Section 4, the customized ACO

algorithm and the new fitness function are addressed. Then, the experimental analysis

and results are presented and discussed in Section 5, followed by the conclusion and

outline of the future works in Section 6.

2 Background

2.1 Basic ACO

ACO is one of the swarm intelligence algorithms [29, 20] whose application in various

problems is known. Like many other meta-heuristic algorithms, the main idea of ACO

is inspired by observing the natural behavior of living organisms. In ACO, different

behaviors of ants in their community have been the source of inspiration.

ACO algorithms were originally conceived to find the shortest route in traveling

salesman problems. In ACO, several ants travel across the edges that connect the nodes

of a graph while depositing virtual pheromones. Ants that travel the shortest path will

be able to make more return trips and deposit more pheromones in a given amount of

time. Consequently, that path will attract more ants in a positive feedback loop. How-

ever, in nature, if more ants choose a longer path during the initial search, that path will

become reinforced even if it is not the shortest. To overcome this problem, ACO as-

sumes that virtual pheromones evaporate, thus reducing the probability that long paths

are selected.

Several types of ACO algorithms have been developed with variations to address the

specificities of the problems to be solved. Here, we briefly describe the basic ACO

algorithm, known as the ant system [9]. Initially, ants are randomly distributed on the

nodes of the graph. Each artificial ant chooses an edge from its location with a proba-

bilistic rule that takes into account the length of the edge and the value of pheromones

on that edge, as shown in Fig. 2 a virtual ant arriving from node A considers which

edge to choose next on the basis of pheromone levels 𝜏𝑖𝑗 and visibilities 𝜂𝑖𝑗 (inverse of

distance). The edge to node A is not considered because that node has already been

visited. Once all ants have completed a full tour of the graph, each of them retraces its

own route while depositing on the traveled edges a value of pheromones inversely pro-

portional to the length of the route. Before restarting the ants from random locations for

another search, the pheromones on all edges evaporate by a small quantity. The phero-

mone evaporation, combined with the probable choice of the edge, ensures that ants

eventually converge on one of the shortest paths, but some ants continue to travel also

on slightly longer paths.

128

www.manaraa.com

Fig. 2. Choosing an edge with a probabilistic rule

 Because the basic ACO is suitable for search space with graph structure, a cus-

tomization of the ACO is required to make this algorithm applicable for the test data

generation problem with an n-dimensional search space.

2.2 PSO

In PSO [3], each particle keeps track of a position which is the best solution it has

achieved so far as pbx; and the globally optimal solution is stored as gbest. The basic

steps of PSO are as follow.

1.Initialize N particles with random positions 𝑝𝑥𝑖 and velocities 𝑣𝑖 on the search space.

Evaluate every particle’s current fitness 𝑓(𝑝𝑥𝑖). Initialize 𝑝𝑏𝑥𝑖 = 𝑝𝑥𝑖 and 𝑔𝑏𝑒𝑠𝑡 =
 𝑖, 𝑓(𝑝𝑥𝑖) = 𝑚𝑖𝑛(𝑓(𝑝𝑏𝑥0), 𝑓(𝑝𝑏𝑥2), . . . , 𝑓(𝑝𝑏𝑥𝑛)) ;

2.Check whether the criterion (i.e. desired fitness function) is met. If the criterion is

met, loop ends; else continue;

3.Change velocities according to formula (1):

 𝑣𝑖 = 𝑣𝑖 + 𝑐1(𝑝𝑏𝑥𝑖 − 𝑝𝑥𝑖) + 𝑐2 (𝑝𝑏𝑥𝑔𝑏𝑒𝑠𝑡 − 𝑝𝑥𝑖) (1)

where is an intra weight,c1, c2 are learning factors.

4.Change positions according to formula (2):

𝑝𝑥𝑖 = 𝑝𝑥𝑖 + 𝑣𝑖 (2)

5.Evaluate every particle’s fitness 𝑓(𝑝𝑥𝑖); if 𝑓(𝑝𝑥𝑖) < 𝑓(𝑝𝑏𝑥𝑖) then 𝑝𝑏𝑥𝑖 = 𝑝𝑥𝑖;

6.Update 𝑔𝑏𝑒𝑠𝑡 and loop to step 2.

2.3 Fitness Functions for Test Data Generation

In this section, an overview of the two general categories of fitness functions [5], BPDF

and Approximation level, is given. After that, BP1 and NEHD which support the cov-

erage of prime paths are explained.

In a CFG, each decision node is associated with a branch predicate. The outgoing

edges from decision nodes are labeled with true or false values of the corresponding

predicate. To traverse a path during execution, it is necessary to find appropriate values

for the input variables such that they satisfy all of the related branch predicates. One

way to define a proper fitness function to guide such a search is using BPDF [5] that

examines the branching node at which the actual path deviated from the intended path.

Its objective is to measure how close this test data is to fulfill the branch predicate

condition that would have sent it down the intended path. For instance, suppose that

129

www.manaraa.com

branch predicate C is (a=b) and f is the BPDF-based fitness function. When |a-b|=0,

then f=0; otherwise, f=|a-b|+k where factor k is a positive constant which is always

added if the predicate is not true. In this way, the fitness function returns a non-negative

value if the predicate is false, and zero when it is true. A complete list of branch distance

formulas for different relational predicate types is presented in [1].

The other way to define fitness functions is using Approximation level [5]. The Ap-

proximation level indicates how close the actual path taken was to reaching the partial

aim (for example, the number of correct nodes the test data encountered or how often

that path was generated). In the case of correct nodes, test data with higher Approxima-

tion levels are judged to be more fit than those with low values.

The Normalized Extended Hamming Distance (NEHD) is designed to measure the

Hamming distance from the first order to the nth order between two paths. But, accord-

ing to [21] the method proposed in [8] has a poor efficiency.

The fitness function BP1 is a linear combination of BDPF and Approximation level that

has the form shown in formula 3.

𝐵𝑃1 = 𝑁𝐶 −
𝐸𝑃

𝑀𝐸𝑃
 (3)

─ NC is the value of the path similarity metric computed based on the number of co-

incident nodes between the executed path and the target one, starting from the entry

node up to the node where the executed path is different from the target one. This

value can vary from 1 to the number of nodes in the target path. In the case similarity

= 1, only the entry node is common to both paths.

─ EP is the absolute value of the BDPF associated with the branch which is deviated

from the target path.

─ MEP is the BDPF maximum value among the candidate solutions that executed the

same nodes of the intended path.
𝐸𝑃

𝑀𝐸𝑃
 is a measure of the candidate solution error with respect to all the solutions that

executed the right path up to the same deviation predicate. This value is used as a solu-

tion penalty. Thus, the search dynamics is characterized by the co-existence of two

objectives: maximize the number of nodes correctly executed with respect to the in-

tended path and minimize the predicate function of the reached predicates. It should be

noted that the range of BP1 is between 0 and the length of the target path (because of

NC) so when the target path is long, the significance of the BPDF parameter is de-

ceased. The reason is that BPDF is in the range [0,1] and it is linearly combined with

the Approximation level part.

Experimental results [5] show that BP1 has a better performance than NEHD [5, 21].

BP1 has two parts where the first part is normalized between [0,1] but the second part

is not normalized. The importance of normalization is shown in [19, 15]. In this paper,

we use a normalized fitness function based on BP1.

3 Related Work

In this section, we review the related work for test data generation based on various

meta-heuristic algorithms. In the literature, there are many works addressing search

130

www.manaraa.com

based test data generation [1, 2]. In this section, we review the prominent methods that

center around different meta-heuristic algorithms.

Jones [23] and Pargas [17] investigated the usage of GA for automated test data

generation regarding branch coverage. Their experiments on several small programs

showed that in general, GA significantly outperforms the random method. Harman and

McMinn [25] performed an empirical study on GA-based test data generation for large-

scale programs and validated its effectiveness over other search algorithms such as hill

climbing. Fraser et al. [26] have implemented a tool named EvoSuite to generate a

whole test suite for satisfying the given coverage goals. The default coverage criterion

used by EvoSuite is branch coverage, but there is also rudimentary support for some

coverage criteria in the context of mutation and data flow testing. In their tool, GA and

Memetic are used to generate JUnit test suites for classes in Java.

Simulated Annealing (SA) is a well-known search algorithm which solves complex

optimization problems using the idea of neighborhood search. Tracey et al. proposed a

framework to generate test data based on SA [27] with the aim of overcoming some of

the problems associated with the application of local search. In this method, test data

can be generated for specific paths without loops, or for specific statements or branches.

Also, Cohen et al. adopted SA to generate test data for combinatorial testing [28].

Windisch et al. applied PSO to generate test data [30]. They compared their method

with a GA-based technique in terms of the convergence characteristic. Mao et al. have

built a new method, called TDGen-PSO [18] which has exhibited better performance

comparing with GA and SA.

ACO has shown a comparable effect on solving optimization problems in compari-

son to other meta-heuristic search algorithms like GA [33-35]. Applying ACO for solv-

ing the problems in software testing have been investigated in [39]. ACO was adopted

in [40] and [41] to produce test sequences (not test data) for state-based software test-

ing.

Li et al. [32] used ACO to generate test data in accordance with the branch coverage

criterion. Unlike our approach, this work transforms the search space (to a graph form)

instead of adapting the ACO algorithm. In addition, [32] has not provided any imple-

mentation and evaluation for its idea. Mao et al. [31] used ACO to generate test data

for the branch coverage criterion. They set the pheromone to each ant in the colony;

thus, pheromone is not distributed in the search space. By defining pheromone in each

ant, a memory is dedicated to each ant so ACO has in fact converted to a memory-based

algorithm [10] like PSO. Their findings show that ACO is better than GA and SA in

this regard. Ayari et al. proposed an ACO-based method for mutation testing [24]. Their

measure for test data adequacy is the mutation score. Meanwhile, their experimental

analysis is based on just two benchmark programs. Bauersfeld et al. used ACO to find

input sequences for testing applications with Graphical User Interface (GUI) [20].

As two approaches capable of covering prime paths, Lin et al. [8] and Bueno et al.

[22] introduced methods for test data generation based on the GA algorithm. They pro-

posed NEHD and BP1 as their fitness function, respectively. These works are based on

GA while scalability and performance of evolutionary algorithms are questionable [14,

13]. In addition, as reported in [20], swarm intelligence algorithms have shown consid-

erable results in the optimization problems.

131

www.manaraa.com

 In this paper, we propose a new search based approach for test data generation which

aims at covering prime paths more effectively and more efficiently through a new nor-

malized fitness function and using ACO and PSO as two prominent swarm intelligence

algorithms. A customization of the ACO is required to make this algorithm applicable

for the test data generation problem.

4 Test Data Generation

The aim of this work is to produce a set of test data to satisfy the given test paths.

There is no restriction on test paths and they can involve prime paths as well. For this

purpose, our method considers every test path as a target, separately, and repeats the

data generation process until the target path is covered or the maximum number of

iterations is exceeded. For PSO, we use its basic algorithm, explained in Section 2, so

in this section, we only explain our customization on ACO. A top-level view of the

algorithm is shown in Fig. 3. For each test path of the program, ants are randomly scat-

tered in the search space. The instrumented program is executed by a test data 𝑡𝑑 which

is determined by the location of a specific ant in the search space. According to the

covered path, the fitness value is computed. Then, for each ant of the population, local

search, global search, and pheromone updating are performed iteratively.

4.1 The Customized ACO

The basic ACO algorithm is mainly used in discrete optimization problems which

are formulated on the graph structure. We customize the basic ACO to generate test

data in an n-dimensional space. The test data generation can be formally described as

follows: Given a program under test P, suppose it has d input variables represented by

vector 𝑋k = (𝑥k, 𝑥k, … , 𝑥k). Vector 𝑋 can be treated as the position vector of an ant in

ACO. For each input variable 𝑥𝑖 (1 ≤ 𝑖 ≤ 𝑑), assume it takes its values from domain

D𝑖. Thus, the corresponding input domain of the whole program is D =
D1× D2× …×D𝑑.

Fig. 3. Algorithm for test data generation

132

www.manaraa.com

In the basic ACO, the search space has a graph structure. Thus, the neighbor area

of an ant is the set of the adjacent nodes of its corresponding position in the graph. Since

the structure of the test data generation problem does not form a graph, the basic ACO

algorithm must be modified such that it can be applied on the non-graph structure of

the problem. For the test data generation problem, each ant's position can be viewed as

a test data and represented as a vector in input domain D. For any ant k (1 ≤ k ≤ n),
its position can be denoted as 𝑋k = (𝑥k, 𝑥k, … , 𝑥k) (𝑑 is the number of input variables

and therefore the number of dimensions).

 A major challenge for applying ACO to test data generation is the form of

pheromone because the search space is continuing and it does not have either node or

edge for defining pheromone on it. To tackle this problem, we partition the search space

by partitioning every domain of each input variable to b equivalent parts that can be

any number dividable by the range of input domain. The best value for b is obtained

from sensitivity analysis which is explained more in Section 5.

The number of partitions for each input variable is determined separately. To illus-

trate partitioning, consider a program with two inputs x and y. If we partition the input

domain of x to b1 parts and the input domain of y to b2 parts, there are totally φ=b1×b2

partitions on the 2-dimensional space (Fig. 4). Each partition has a special pheromone

value. Therefore, the number of pheromones in the search space is equal to the number

of partitions in this space.

Fig. 4. A sample partitioned search space

Fig. 5. The number of neighbors in local

search based on the number of domains

Local Search.

During the local search, each ant looks for a better solution in its own neighborhood

area. To compute the neighbors of ant k, we must consider it in the n-dimensional space

D. The neighbors of ant with position vector 𝑋k = (𝑥k1, 𝑥k2, … , 𝑥kd) have the position

vector 𝑋𝑘’ = (𝑥k’1, 𝑥k’2, … , 𝑥k’d) where 𝑥k’i = 𝑥ki +𝑠, −1 ≤ 𝑠 ≤ 1, and 𝑋k’ ≠ 𝑋k. If an

input has integer domain, s is 0 or 1 or -1. For a continues variable, three random num-

bers are selected for s. In a 2-dimensional search space, the location of an ant can be (1,

1). Thus, the positions of the neighbors are: (0, 1), (1, 0), (0, 0), (2, 1), (1, 2), (2, 2), (2,

0), (0, 2). The number of neighbors for an ant in a d-dimensional space is 3d-1 as it is

shown in Fig. 5.

The rule for local search or local transfer of ant's position can be represented as follows:

ant k transfers from 𝑋𝑘 to a new position 𝑋𝑘’if the fitness of 𝑋𝑘’is better than that of

Xk (𝑖. 𝑒. , 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑘’) < 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑘)), and 𝑋𝑘’ has the best fitness value among

𝑋𝑘’neighbors. Otherwise, the ant must stay at its current position (i.e., 𝑋𝑘). It should

133

www.manaraa.com

be mentioned that according to our implementation, the best fitness value is 0. Thus, a

lower value is considered as a better fitness.

Global Search.

The previous step is an activity of local optimization for each ant in the colony. But,

this is not sufficient to find a high-quality solution because, at the local transfer stage,

there might be an ant with no movement since it could not find a neighboring position

with better fitness value. This situation is known as local optima trap [10] which could

be resolved by an action called global transfer.

For any ant k in the colony (1 ≤ k ≤ n), if its fitness is lower than the average level,

i.e., Fitness(X𝑘) > Fitness𝑎𝑣𝑔 , a random number 𝑞 is selected. Fitness𝑎𝑣𝑔is the av-

erage fitness of whole ant colony and 𝑞 is a random number from 0 to 1. When

Fitness(X𝑘) > Fitness𝑎𝑣𝑔 and 𝑞 < 𝑞0, the position of ant k is randomly set in the

whole search space (𝑞0 is a preset parameter). When Fitness(X𝑘) > Fitness𝑎𝑣𝑔 and

𝑞 ≥ 𝑞0, the position of ant k is randomly set to a position in a partition which has a

maximum value of pheromone. With doing global search any ant that has in the local

optima situation is transferred with probability 𝑞0 to a random position in the whole

search space and with a probability 1 − 𝑞0 to a position which has a maximum value

of pheromone.

Update Pheromone.

After doing global and local search for all ants in each run, the pheromone is up-

dated (Fig. 3). To update pheromone value in every partition, the following rule is used:

𝜏(𝑗) ← (1 − 𝛼)×𝜏(𝑗) + 𝛼×𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑡𝑠 𝑖𝑛 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑗 (4)

Where 𝛼 ∈ (0, 1) is a pheromone evaporation rate, 𝜏(𝑗) represents the value of pher-

omone in the jth partition; j stands for the partition index.

4.2 Fitness Function

We represent a test path by sequences of characters which are the labels of edges

in the CFG of the SUT. Therefore, for test data generation, the fitness function is cal-

culated for the target path and the path traversed by any test data. To formulate the

fitness function considering the order of the branches, both branch distance and Ap-

proximation level are used. The fitness function FT that is used to evaluate each candi-

date solution has the form shown in formula 5 and has two separately normalized parts.

One part relates to the branch distance and the other relates to the Approximation level.

Each part has the value between 0 and 1. Thus, FT is ranged from 0 to 2.

𝐹𝑇 = (1 −
𝑁𝐶

𝑇𝑃
) +

𝐸𝑃

𝐸𝑃+𝛽
 (5)

─ NC is the value of the path similarity metric. (described in Section 2.3)

─ TP is the length of the target path, thus (1-NC/TP) has a normalized value between

0 and 1. The value zero is the optimal value for this part of FT.

─ EP is the value of branch distance. (described in Subsection 2.3)

─ β is a parameter for the normalization proposed in [19]; based on the experiment

done in [19], we set it to 1.

134

www.manaraa.com

It should be mentioned that the normalization function that we used (i.e.
𝐸𝑃

𝐸𝑝+𝛽
) is the

same as what proposed in [19]. By using this function instead of
𝐸𝑃

𝑀𝐸𝑃
 (in BP1), there is

no need to calculate MEP which leads to more efficiency.

In contrast to BP1, the values of fitness are normalized between 0 and 2, and fitness

= 0 means the target path is fully met. Normalization is separately done for two parts

of FT because the two parts of the fitness function would have the same share to conduct

the individuals.

5 Experiments

In this section, we assess our proposed approach, which uses two prominent swarm

intelligence algorithms PSO and ACO, against the GA-based method proposed in [22].

As mentioned before, it is shown by experiment in [21] that the method proposed in [8]

has low efficiency. Thus, we do not compare our approach with [8]. To perform the

experiment, all the three algorithms have been implemented with the same fitness func-

tion, proposed in Subsection 4.2. We define the following two criteria as evaluation

metrics:

 Average Coverage (AC), i.e., the average percentage of covered test paths in re-

peated runs.

 Average Time (AT), i.e., the average execution time (in milliseconds) of realizing

test path coverage.

5.1 Experimental setup

We selected a set of benchmark programs from the literature. Most of these pro-

grams, including “Triangle Type” (1), “Power xy” (2), “Remainder” (3), “GCD” (4),

“LCM” (5) and “ComputeTax” (6), are commonly used in software testing research.

Table 2 shows the number of lines of code (LoC) and the number of prime paths (No.

PP) of each program.

Table 2. Programs selected for the experiment

#P Program name LoC No. PP Description

1 Triangle Type 43 4 Find the type of triangle [24, 18]

2 Power xy 27 3 Determine the value of xy

3 Remainder 30 3 Determine remainder of x/y [24, 18]

4 GCD 24 2 Find greatest common divisor

5 LCM 38 7 Find least common multiplier

6 Compute Tax 164 24 Compute tax amount [24, 18]

7 Synthetic 45 8 Synthetic of while, for and if [16]

We manually instrumented each original program without changing its semantics.

Then, we constructed the corresponding CFG by using Control flow graph factory tool

[12] and extracted a list of prime paths using the tool available in [11].

135

www.manaraa.com

Before using GA, ACO, and PSO, their parameters must be initialized. The chosen

values are shown in Table 3.

Table 3. Parameter setup

Algorithm Parameter Value

GA Selection method Roulette wheel

Crossover method Single point

Crossover probabil-
ity

80%

Mutation probability 0.05%

Chromosome-type Binary string

PSO  1

c1 2.05

c2 2.05

ACO 𝛼 0.3

q0 0.5

b Varies based on program

All Algo-
rithms

Population size 50

No of iteration 100

5.2 Experimental results

The experimental results are presented in Table 4. The results show that our custom-

ized ACO is better than GA in terms of both criteria. Furthermore, our customized ACO

has equal or better average coverage comparing with the PSO algorithm. However,

PSO reaches the solution in less time in comparison to ACO because this algorithm is

basically less complex.

Table 4. Comparison between the customized ACO, PSO, and GA
#P Average coverage (%) Average time (milliseconds)

GA PSO Custom-

ized ACO

GA PSO Customized

ACO

1 74.5 96.5 100 103.7241 18.18289 31.2224

2 95.66667 100 100 223.9718 22.72688 138.9988

3 94.33332 100 100 209.9785 1.981523 27.81944

4 100 100 100 49.63726 1.92135 20.21426

5 51.4285 71.4285 71.4285 475.3366 32.66283 236.5719

6 98.29 100 100 440.2108 10.53734 286.0023

7 58 80.75 87.5 209.352 155.7802 182.85854

In the customized ACO, selecting the best value for parameter “b” (i.e. the number

of parts) is important, therefore, the sensitivity analysis is done for this parameter. To

do this, we calculate the values of the two evaluation criteria with different number of

parts. As can be seen in Fig. 6 and Fig. 7, the average coverage and average time are

increased with increasing the number of parts, but when we reach to the maximum

coverage, we do not have any change in the average coverage with increasing the num-

ber of the parts. Also, the best value of parameter b for programs “Triangle Type” and

“Synthetic” is 5000, for “compute tax” is 50000, for “Remainder” and “LCM” is 1000

136

www.manaraa.com

and for “Pow xy” and “GCD” is 500. In each program, when parameter b is set to this

value, the least average time and the most average coverage are gained.

Fig. 6. Average coverage against the number

of partitions

Fig. 7. Average time against the number of

partitions

6 Conclusions and future works

In this paper, we have presented a search-based test data generation approach to

cover prime paths of the program under test. The proposed approach uses ACO and

PSO as two prominent swarm intelligence algorithms and a new normalized fitness

function. We customized the ACO algorithm by combining it with the idea of input

space partitioning. Also, the proposed fitness function is a normalization of the fitness

function BP1 proposed in the [2]. We compared the customized ACO, PSO, and GA

when all of these three algorithms are applied with the proposed fitness function. The

results have shown that our method is stronger than GA in terms of both evaluation

criteria. In addition, the results manifest that in comparing with PSO, the customized

ACO results in a better coverage, but has worse efficiency. As future work, we will

consider the following research areas:

 The main reason that causes the swarm intelligence algorithms do not widely apply

in the test data generation problem is the search space of the string type. Most swarm

intelligence based algorithms work on the structural search space, while the input

domain of the string variables does not have a defined neighborhood concept.

 Using the static structure of the program in the partitioning of the search space (i.e.

defining parameter “b” in the customized ACO).

 Multiple path test data generation (i.e. in each run, we consider multiple paths as

target instead of one path) by swarm intelligence algorithms is another issue that

could be considered in the future. There are approaches for multiple test path gener-

ation by evolutionary algorithms, but they cannot be applied directly using the

swarm intelligence (i.e., population-based) algorithms.

References

1. McMinn P. Search-based software test data generation: a survey. Software testing verifica-

tion and reliability 2004; 14 (2): 105–56.

137

www.manaraa.com

2. Ali Sh, Briand LC, Hemmati H, Panesar-Walawege RK, A systematic review of the appli-

cation and empirical investigation of search-based test case generation. Software Engineer-

ing, IEEE Transactions on. 2010; 36 (6): 742-762.

3. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE Int’l Conf. Neural

Networks, vol. 4, pp. 1942–1948 (1995)

4. Ammann P and Offutt J, Introduction to Software Testing, Cambridge University Press,

2008.

5. Watkins, A. and Hufnagel, E.M., Evolutionary test data generation: a comparison of fitness

functions. Software: Practice and Experience, 36(1), (pp.95-116) 2006.

6. King JC, A new approach to program testing. In ACM SIGPLAN Notices 1975; 10 (6): 228-

233.

7. Baresel A, Harmen S, Michael S. Fitness Function Design to Improve Evolutionary Struc-

tural Testing, In GECCO 2002 (Vol. 2, pp. 1329-1336).

8. Lin JC, Yeh PL. Automatic test data generation for path testing using GAs. Information

Sciences. 2001; 131 (1): 47-64.

9. Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating

agents. IEEE Transactions on. 1996; 26 (1): 29-41.

10. Floreano D, Mattiussi C. Bio-inspired artificial intelligence: theories, methods, and technol-

ogies. MIT press, 2008.

11. Graph Coverage Web Application,https://cs.gmu.edu:8443/offutt/coverage/GraphCoverage

12. Control Flow Graph Factory, http://www.drgarbage.com/control-flow-graph-factory

13. D. Thierens, “Scalability problems of simple genetic algorithms,” Evol. Comput., vol. 7, no.

4, pp. 331–352, Dec. 1999

14. Feldt, R. and Poulding, S., 2015, May. Broadening the search in search-based software test-

ing: It need not be evolutionary. In Proceedings of the Eighth International Workshop on

Search-Based Software Testing (pp. 1-7). IEEE Press

15. Baresel, A., Sthamer, H. and Schmidt, M. July. Fitness Function Design To Improve Evo-

lutionary Structural Testing. In GECCO, 2002 (Vol. 2, pp. 1329-1336)

16. Ghiduk AS. Automatic generation of basis test paths using variable length genetic algorithm.

Information Processing Letters. 2014; 114 (6): 304-16

17. Pargas RP, Harrold MJ, Peck RR. Test-data generation using genetic algorithms. Software

Testing Verification and Reliability. 1999; 9 (4): 263-82.

18. Mao C. Generating Test Data for Software Structural Testing Based on Particle Swarm Op-

timization. Arabian Journal for Science and Engineering. 2014; 39 (6): 4593-607

19. Arcuri, A. It really does matter how you normalize the branch distance in search‐based soft-

ware testing. Software Testing, Verification and Reliability, 2013 23(2), pp.119-147

20. Blum, C. and Li, X., Swarm intelligence in optimization. In Swarm Intelligence. 2008 (pp.

43-85). Springer Berlin Heidelberg

21. Chen Y, Zhong Y, Shi T, Liu J. Comparison of two fitness functions for GA-based path-

oriented test data generation. In 2009 Fifth International Conference on Natural Computa-

tion 2009 (pp. 177-181). IEEE.

22. Bueno P, Jino M. Automatic test data generation for program paths using genetic algorithms.

International Journal of Software Engineering and Knowledge Engineering 2002; 12(6) (pp.

691–709).
23. Jones BF, Sthamer HH, Eyres DE. Automatic structural testing using genetic algorithms.

Software Engineering Journal. 1996; 11 (5): 299-306.

24. Ayari K, Bouktif S, Antoniol G. Automatic mutation test input data generation via ant col-

ony. In Proceedings of the 9th annual conference on Genetic and evolutionary computation

2007 Jul 7 (pp. 1074-1081). ACM
25. Harman M, et. al. A theoretical and empirical study of search-based testing: Local, global,

and hybrid search. Software Engineering, IEEE Transactions on. 2010; 36 (2): 226-47.

138

www.manaraa.com

26. Fraser G, Arcuri A. Whole test suite generation. Software Engineering, IEEE Transactions

on. 2013; 39(2): 276-91.
27. Tracey N, Clark J, Mander K, McDermid J. An automated framework for structural test-data

generation. In Automated Software Engineering, 1998. Proceedings. 13th IEEE Interna-

tional Conference on 1998 (pp. 285-288). IEEE.

28. Cohen MB, Colbourn CJ, Ling AC. Augmenting simulated annealing to build interaction

test suites. In Software Reliability Engineering, 2003. ISSRE 2003. 14th International Sym-

posium on 2003 Nov 17 (pp. 394-405). IEEE.

29. Kennedy, J.,.F., Eberhart, R.C. and Shi, Y., 2001. Swarm intelligence. Morgan Kaufmann.

30. Windisch A, Wappler S, Wegener J. Applying particle swarm optimization to software test-

ing. In Proceedings of the 9th annual conference on Genetic and evolutionary computation

2007 Jul 7 (pp. 1121-1128). ACM.

31. Mao, C., et. al., 2015. Adapting ant colony optimization to generate test data for software

structural testing. Swarm and Evolutionary Computation, 20, pp.23-36.

32. Li K, Zhang Z, Liu W. Automatic test data generation based on ant colony optimization. In

2009 Fifth International Conference on Natural Computation 2009 Aug 14 (pp. 216-220).

33. Elbeltagi E, Hegazy T, Grierson D. Comparison among five evolutionary-based optimiza-

tion algorithms. Advanced engineering informatics. 2005; 19 (1): 43-53.

34. Dorigo M, Birattari M, Stützle T. Ant colony optimization. Computational Intelligence

Magazine, IEEE. 2006; 1 (4): 28-39.

35. Simons C, Smith J. A comparison of evolutionary algorithms and ant colony optimization

for interactive software design. In Proceedings of the 4th Symposium on Search Based-Soft-

ware Engineering 2012 Sep 28 (pp. 37).

36. Chen WN, et.al.. Ant colony optimization for software project scheduling and staffing with

an event-based scheduler. IEEE Transactions on Software Engineering,. 2013; 39 (1): 1-7.

37. Xiao J, Ao XT, Tang Y. Solving software project scheduling problems with ant colony op-

timization. Computers & Operations Research. 2013; 40 (1): 33-46.
38. Azar D,et.al. An ant colony optimization algorithm to improve software quality prediction

models:Case of class stability. Information and Software Technology. 2011;53 (4): 388-93.

39. Suri B, Singhal S. Literature survey of ant colony optimization in software testing.

(CONSEG), 2012 CSI Sixth International Conference on (pp. 1-7). IEEE.

40. Li H, Lam CP. An ant colony optimization approach to test sequence generation for state

based software testing. In Quality Software,.(QSIC 2005). (pp. 255-262). IEEE.

41. P.R. Srivastava, K. Baby, Automated software testing using metahurestic technique based

on an ant colony optimization, in: Proceedings of 2010 (ISED'10) (2010) 235–240

139

www.manaraa.com

Purpose-based Policy Enforcement in
Actor-based Systems

Shahrzad Riahi, Ramtin Khosravi, and Fatemeh Ghassemi

School of Electrical and Computer Engineering,
College of Engineering, University of Tehran,

Tehran, Iran
{sh.riahi, r.khosravi, fghassemi}@ut.ac.ir

Abstract. Preserving data privacy is a challenging issue in distributed
systems as private data may be propagated as part of the messages trans-
mitted among system components. We study the problem of preserving
data privacy on actor model as a well known reference model for dis-
tributed asynchronous systems. Our approach to prevent private data dis-
closure is to enforce purpose-based privacy policies which control the ac-
cess and usage of private data. We propose a method to specify purposes
based on workflows modeled by Petri nets in which transitions corre-
spond to message communications. We first use model checking to verify
whether the actor model behaves conforming to the purpose model. Then,
the satisfaction of the policies are checked using data dependence anal-
ysis. We also provide a method to evaluate the effectiveness of policies
through checking of private data disclosure in the presence of privacy
policies. Since these checks are performed statically at design time, no
runtime overhead is imposed on the system.

Keywords: Actor-based systems, Privacy, Purpose, Data disclosure,
Formal Verification, Rebeca

1 Introduction

Actor [1] is a well known model for concurrent and distributed systems, in which
objects (called actors) encapsulate data and communicate via asynchronous mes-
sage passing. In such systems, data of an actor can flow among other actors
through message passing. Since the actors can send private data to each other
as part of the transmitted messages, in systems where privacy is a concern, it
is essential to protect private data from disclosure. Actor model can be used
for modeling real world distributed systems, so disclosure of private data in the
model indicates the privacy violation in the real world. Solove [2] classifies differ-
ent types of privacy violations in four classes: information collection, information
processing, information dissemination, and invasions.

Our concern in this paper, is the third case which is affected by actor commu-
nication model. A special form of information dissemination is disclosure, which,

140

www.manaraa.com

according to [3], means “making private information known outside the group
of individuals expected to know it”. In actor-based systems, if there is no suffi-
cient control on the transmitted messages and their included data, disclosure of
private data may happen.

A useful method to prevent private data disclosure would be to enforce
system-wide privacy policies which control the access and usage of these data
in the system. In this way, private data are used only as intended. The purpose
of using a private data is an important aspect of privacy protection. Purpose
refers to the intention behind accessing or using data items. In other words,
as stated in [4], “purposes often refer to an or a set of abstract actions”. For
example, patient’s health record can be accessed for the purpose of treatment, re-
search, insurance, and so on. To incorporate purpose in privacy policies, privacy
constraints can be explained as access or usage control policies which contain
purpose. This type of privacy policies is called purpose-based policies. Based
on [5], [12], and [6], purpose-based policies can be categorized in two groups:
data-centric and rule-centric policies. Data-centric policies focus on data and
specify the purposes for which a data item can be used. A Rule-centric policy
specifies that a subject can perform an action on a private data item with a
certain purpose.

How the purpose of using a data item or performing an action is identified,
is an important part of data-centric and rule-centric policy enforcement. Most
existing work on specification and enforcement of purpose, do not consider se-
mantics for purposes. Some work like [11], [12] and [6] consider that “an action
is for a purpose if and only if the action is part of a plan for achieving that
purpose”, and define the purpose semantics using formalisms based on plan-
ning. Nevertheless, to the best of our knowledge, there is no work that specifies
and enforces purposes for actor-based systems. We consider the idea of planning
for specification and enforcement of purpose for actor-based systems and model
plans using workflows (Sect. 4).

In this paper, we focus on avoiding disclosure of private data in the actor-
based systems by enforcing purpose-based policies at system design time. We
assume that the actor-based system is modeled by Rebeca modeling language.
Rebeca [13] (Reactive Objects language) is an actor-based modeling language,
with a formal foundation, that is used to model concurrent and distributed
systems. It is important to note that our method does not depend on the choice
of the language and can be tailored to any kind of actor-based modeling or
programming language with the assumption that the messages are delivered in
the order they are sent.

Having the system model, a set of data-centric policies, a set of rule-centric
policies, and the description of the purposes, we first model the purposes in a
manner suitable for actor systems and then check whether the system satisfies
the given policies. We use a two-step mechanism for purpose-based policy en-
forcement. In the first step (called purpose enforcement), we verify whether the
system works exactly based on the defined purposes (Sect. 5) and in the sec-
ond step (called policy enforcement), data-centric and rule-centric policies are

141

www.manaraa.com

checked (Sect. 6). We use model checking for purpose enforcement and data
dependence analysis for policy enforcement. In addition to purpose and pol-
icy enforcement, we introduce another method, called data disclosure analysis,
which determines each actor in the system can access which private data of other
actors (Sect. 7). So it can be used as an evaluation of the effect of purpose-based
policies on avoiding data disclosure.

If the purpose enforcement or policy enforcement step determines that the
model does not behave according to the intended purpose model or policies, we
guide the modeler to correct the model by providing counterexamples. But if
data disclosure happens, despite the system satisfies the purpose-based policies,
the purposes and policies must be reviewed.

2 Related Work

The existing methods for specifying and enforcing purpose can be categorized in
three groups: self-declaration, role-based approach, and action-based approach.

In the self-declaration approach (e.g. [8], [14]), the subject (i.e. initiator of
an access request) explicitly expresses the purpose of its action. This approach
is based on trusting the requester to honestly declare its purpose of action. But
this approach is unable to detect if a malicious user claims a false purpose. In
role-based approach (e.g. [10], [7], [9]), the purpose is identified based on the
subject’s role in the system. This approach cannot exactly identify the purpose
of an action, because members of the same role may practice different purposes
in their actions.

The main problem of these two approaches is that they do not consider that
the purpose of an action may be determined by “its relationships with other
interrelated actions” [6]. Action-based approaches consider that “an action is
for a purpose if and only if the action is part of a plan for achieving that pur-
pose” [6]. Tschants et. al. [11] define the purpose semantics using a formalism
based on planning and using a modified version of Markov Decision Processes
to model this planning. With this formal semantics, they automate auditing
for purpose restrictions. Jafari et. al. [12] use a modal logic language to define
purpose semantics. They present a model-checking algorithm for evaluating pur-
pose constraints in a workflow-based information system (which is modeled by
a workflow formalism based on Petri nets) and use this model checker for en-
forcing purpose-based policies using a workflow reference monitor. Masellis et.
al. [6] define semantics of purpose-aware policies based on a first-order temporal
logic and design a runtime monitor for enforcing purpose-aware policies. They
consider that the semantics of a purpose is its associated workflow and specify
workflows using Linear-Time Temporal Logic (LTL).

We use the same idea that the semantics of a purpose is its associated work-
flow. [11] uses Markov Decision Processes, [12] a modal logic language, and [6]
Linear-Time Temporal Logic, as the formalism for purpose semantics, but we
formalize purposes using an interpretation of Petri nets tailored for actor sys-
tems (why we have chosen Petri nets is explained in Section 4). Another dif-

142

www.manaraa.com

ference with previous work is that [6] uses run-time monitoring for enforcing
purpose-aware policies, [11] tries to audit purpose restrictions, and [12] uses
a workflow reference monitor to enforce purpose-based polices. We use model
checking and data dependence analysis for purpose-based policy enforcement.
This is performed statically at design time, so no runtime overhead is imposed
on the system. This way, we can make sure that all the actors do nothing that
violates the purpose-based policies and there is no disclosure of private data in
this system.

3 Preliminaries

3.1 Running Example

In this section we describe an educational institute as the running example which
will be used throughout this paper. We consider students request this institute
for two purposes: educational consulting (called Consulting purpose) and class
registration (called Registration purpose). This system includes five actors: stu-
dent which requests the system for one of the two purposes, and four employees
(Em1, Em2, Em3 and Em4) with different responsibilities. We consider Contact-
Info (including student’s name and phone number), EduRec (including student’s
educational record), and CPersonal (including student’s complete personal in-
formation) as private data of student. We assume that if an employee knows a
student’s private data item without permission, then she can abuse it.

3.2 System Model in Rebeca

A Rebeca [13] model consists of a set of reactive classes (called rebec) which
are concurrently executed and communicate via asynchronous message passing.
Each rebec has three main parts: known rebecs (rebecs which can be receivers of
this actor sending messages), state variables, and message servers. Each rebec has
a FIFO queue to automatically receive messages. When a message is taken from
the queue, the corresponding message server is executed atomically. We define a
new type of state variables, called private data, and assume that each actor has
its own private data (e.g. postal code, medical records, telephone number, and
so on). Fig. 1 shows an incomplete portion of our running example modeled in
Rebeca1.

3.3 Purpose-based Privacy Policy

The purpose-based policies, including data-centric and rule-centric policies, are
specified in an actor system as below:

1 The complete Rebeca code for our running example is accessible from
http://ramtung.ir/privacymodel.zip.

143

www.manaraa.com

Fig. 1. An incomplete portion of our running example modeled in Rebeca

1. A data-centric policy is defined as a pair of a data item, which is an actor’s
private data item, and the purpose for which it can be used. For example,
(Student’s ContactInfo , Registration) specifies that the ContactInfo of a
student can be used for the purpose of Registration.

2. A rule-centric policy is defined as a tuple of a subject (one of the actors in
the system), a data item (an actor’s private data item), an action, and the
purpose. For example, (Em1 , Student’s EduRec , Send , Consulting) specifies
that Em1 can send the student’s EduRec for the purpose of Consulting.

As we will explain in Section 4, it is sufficient for our analysis to only consider
message sending as actions in an actor-based system, since we do not explic-
itly express the action in a rule-centric policy and assume that all the actions
appeared in the rule-centric policies correspond to sending of messages in the
system. The given data-centric and rule-centric policies for the running example
are presented in Table 1 and Table 2 respectively.

Table 1. Data-centric policies for the
running example

Actor’s Private Data Purpose

(Student,EduRec) Consulting

(Student,ContactInfo) Consulting

(Student,ContactInfo) Registration

(Student,CPersonal) Registration

Table 2. Rule-centric policies for the run-
ning example

Sender Actor’s Private Data Purpose

Em1 (Student,EduRec) Consulting

Em1 (Student,ContactInfo) Registration

Student (Student,EduRec) Consulting

Student (Student,ContactInfo) Consulting

Student (Student,ContactInfo) Registration

Student (Student,CPersonal) Registration

As mentioned before, we use workflows to describe purposes in the actor
model. Actions in these workflows are messages communicated among actors in
the system. The workflow of Consulting purpose is defined as follow:

144

www.manaraa.com

1. Student gets her request for educational consulting to Em1. This request
includes ContactInfo and EduRec of student.

2. Em1 forwards this request to Em2. This request includes student’s EduRec.
3. Em2 queries Em3 for current state of the classes, if needed, and provides the

consulting result.
4. Em1 delivers the consulting result to student.

The workflow of Registration purpose is defined as follow:

1. Student gets her request for registration to Em1. This request includes Con-
tactInfo of student.

2. Em1 forwards this request to Em3 (including student’s ContactInfo).
3. Em3 requests student for complete personal information and queries Em4

for payment information.
4. When Em3 receives both of the student and Em4 responses, the registration

is done.

4 Purpose Model

As mentioned in Section 2, the self-declaration and role-based approaches for
specifying and enforcing purpose, do not assume a semantics for the purpose, so
a major problem is the ambiguity in the interpretation of purposes. Hence, we
use action-based approach and address the mentioned problem by relating the
actions using the workflow-based plan.

Masellis et al. [6] refer to workflow as “collections of activities (called tasks)
together with their causal relationships, so that the successful termination of a
workflow corresponds to achieving the purpose which it is associated to”. There
are various types of workflow definition languages, that can be categorized in
two groups. The first group includes models such as Petri nets [17] and process
algebra [18], which have a proper formal semantics. The second group includes
approaches like Web Services Business Process Execution Language (BPEL)
[19] and the Business Process Modeling Notation (BPMN) [20]. These languages
often have no proper formal semantics [16].

Our goal is to formalize the notion of purpose in a manner suitable for actor
models. According to [15], it is possible to formalize most aspects of privacy poli-
cies by abstracting all activities as communications between actors. Workflows
are normally expressed at the requirements (or business level), which comprise
the tasks and the control flow among the activities in the system. During the
design process, these tasks must be mapped into elements of the system model.
In our case, since the actor model is based on the object-oriented paradigm,
tasks are mapped into methods (message processors) of the actors based on the
principles of data encapsulation. Furthermore, a behavioral model of the purpose
is constructed based on the control flow specified in the workflow, to describe the
order of interactions among the actors. We call this workflow “message flow”.

In the case of sequential models, the behavioral model may be expressed as
UML sequence diagrams. However, since actors communicate asynchronously,

145

www.manaraa.com

the underlying behavioral model must be able to clearly express concurrent com-
putation. Hence, we choose Petri nets to describe the global control flow of the
system. Aalst [22] presents several good reasons for using Petri nets to specify
workflows: “formal semantics despite the graphical nature, state-based instead
of event-based, abundance of analysis techniques”.

In addition to the above reasons, there are transformations from workflows
described in modeling languages like BPMN and BPEL to Petri net models ([16]
surveys these transformations). We consider the standard definition of Petri net
[17] that consists of two finite disjoint sets of places and transitions together
with a flow relation. In a Petri net, the places, transitions and flow relations
are graphically represented by circles, squares and directed arcs respectively. We
borrow Definition 1 and Definition 2 from [21]:

Definition 1 (Petri net). A Petri net is a triple (P , T , F) where:

1. P is a finite set of places.
2. T is a finite set of transitions (P and T are disjoint sets).
3. F ⊆ (P × T) ∪ (T × P) is a set of arcs (or flow relations)

In a Petri net, places model intermediate states and transitions model tasks.
In [16], the mapping of some workflow patterns to Petri nets are presented. A
Petri net that models a workflow definition is called a workflow net (WF-net).

Definition 2 (WF-net). A Petri net PN = (P , T , F) is a WF-net (workflow
net) if and only if:

1. PN has two special places source and sink. The source place has no input arc
and the sink place has no output arc (a token in the source place corresponds
to a new instance of workflow, and a token in the sink place corresponds to
a completed instance of workflow).

2. If we add a new transition to PN which connects sink place with source place,
then the resulting Petri net is strongly connected.

We specify purposes using message flows, and model the message flows using
a modified version of WF-net, referred to as message flow net (MF-net), in which
transitions are messages.

Definition 3 (Message flow net (MF-net)). A message flow net MFN =
(P , T , F) is a WF-net in which:

1. Each transition corresponds to a specific message in actor system.
2. Flow relations specify the order in which the actors are allowed to take their

messages.

Each message is modeled as a triple (s,m, r) in which s is the name of the
sender actor, m is the message name, and r is the name of the receiver actor. A
transition (s,m, r) in a MF-net means actor r takes message m from its message
queue (and starts the execution of the corresponding message server) which is
sent by actor s. The MF-net models of Consulting and Registration purposes
specified in running example, are shown in Fig. 2 and Fig. 3 respectively.

146

www.manaraa.com

Fig. 2. Consulting purpose in educational institute modeled in MF-net

Fig. 3. Registration purpose in educational institute modeled in MF-net

5 Purpose Enforcement

As discussed in the previous section, each purpose is modeled by a MF-net.
We add a new actor to the system for each MF-net, called purpose actor or
p-actor, aiming to verify whether the actor system behaves according to the
corresponding purpose. Each p-actor checks the state of the MF-net and decides
whether an execution of a message server conforms to the corresponding purpose.

5.1 Constructing Purpose Actor

Since p-actors are defined to check the conformance of the transmitted messages
to the purposes of the system, when an actor takes a message from its message
queue, a copy of this message, parameterized with its sender and receiver, is
sent to the corresponding p-actor. Therefore, we define one message server in
the p-actor for each message in the MF-net. For simplicity, we assume that a
message can only be part of one purpose.

The state of a MF-net: A state in a MF-net (as in Petri net) is represented
by the distribution of tokens over the places (also referred to as marking). For
keeping the state of the MF-net in the corresponding p-actor, we define an integer
variable for each place that represents the number of tokens in that place. So,
the state of the MF-net is modeled by the values of this set of integer variables
which are the state variables of the p-actor. The variables p1, ..., pn in Fig. 4, are
the variables corresponding to the places of a Petri net.

147

www.manaraa.com

The behavior of a MF-net: The behavior of a MF-net is modeled with
conditional statements in the body of each p-actor’s message server. Fig. 4 shows
the description of a simple MF-net behavior. We can model different types of
workflow patterns in this way.

Fig. 4. Modeling a transition in the purpose actor

We call the conditional statement inside the p-actors’ message servers the
transition condition. It is noticeable that the execution of M in right side of
Fig. 4 is atomic.

5.2 Purpose Verification

For each transition in a MF-net model, one boolean variable (initially false) is
included as a state variable of the corresponding p-actor, and if the transition
condition does not hold, then this boolean variable (e.g. t M in Fig. 4) is set to
true, representing an error has occurred. So, the property that must be checked
is the invariant property (¬t1) ∧ ... ∧ (¬tn) (t1, ..., tn are the mentioned boolean
variables for the transitions).

We use model checking to verify whether the system satisfies the above in-
variant property. If it is not satisfied, counterexamples are reported for the cor-
rection of the model. We use RMC (Rebeca Model Checker) [24] to model check
our running example. The p-actor for Consulting purpose, is presented in Fig. 5.

We can define multiple instances of one MF-net in its corresponding p-actor
for different instances of its execution, and distinguish them by a workflow ID.

6 Policy Enforcement

Now that we have a system that works exactly according to the defined purposes,
we aim to check whether the data-centric and rule-centric policies hold in the
system. As data is an important aspect of these policies, we need a mechanism
which can trace the flow of data in both actors’ message servers as well as sending
messages to other actors. To achieve this, we use data dependence graph analysis.

148

www.manaraa.com

Fig. 5. Purpose actor for Consulting purpose

6.1 Data Dependence Graph

In [23], a special dependence graph based on Rebeca [13] semantics is introduced
and used as an intermediate graph representation for slicing a Rebeca model.
We modify this dependence graph and use it for verifying data-centric and rule-
centric policies and analyzing the disclosure of private data in the actor systems.

Rebeca Dependence Graph

Rebeca Dependence Graph (RDG) introduced in [23], has three types of nodes,
including reactive class entry, message server, and statement (for Rebeca state
variables and statements) nodes, and four types of edges, including data depen-
dence, control dependence, member dependence, and parameter-in edge/activa-
tion edges. Table 3 presents how [23] models Rebeca features by RDG. Activa-
tion, formal-in and actual-in nodes are of statement nodes which are defined to
model message passing.

In addition to the above dependencies, there is one more dependency called
intra-rebec data dependency. According to [23], “this dependency exists between
the last statement of a message server which is assigning value to a variable and
the first use of that variable in another message server”. In RDG, intra-rebec
data dependency is modeled using data dependence edges.

149

www.manaraa.com

Table 3. Mapping Rebeca features to RDG according to [23]

Rebeca
features

RDG nodes RDG edges

Reactive class A reactive class entry
node

The reactive class entry node is connected to
each of its state variables and message servers
by the member dependence edges.

Message server An entry node and a
set of nodes represent-
ing its statements

The existing dependencies within the body of
the message server modeled by data depen-
dence edges and control dependence edges.

Message passing An activation node The activation node is connected to the en-
try node of the related message server by an
activation edge.

Parameters of
the messages

Formal-in and actual-
in nodes

Parameter-in edges connect the formal-in and
actual-in nodes.

Modified Rebeca Dependence Graph

We introduce a modified version of Rebeca dependence graph which is suitable
for our policy enforcement. The modified Rebeca dependence graph differs from
the original version [23] in the following ways:

1. For modeling the actors’ private data, we add a new type of node, called
private data node.

2. According to [23], a data dependence edge exists “between two statement
nodes if assigning value to a variable at one statement might reach the usage
of the same variable at another statement”. We categorize assignment of
value to a variable in two cases: reversible and irreversible. In reversible
assignment the operands can be extracted from the result. For example in
a = b × 10 we can extract value of b from the value of a. In irreversible
assignment, the operands cannot be conducted from the result. For example
in a = b mod 3, the exact value of b cannot be conducted from the value of
a. We only use data dependence edges for reversible assignments.

3. We consider the activation nodes, which correspond to send statements, as
a separate type of nodes.

So, in a modified Rebeca dependence graph DDG = {V, E}, V (DDG) =
V-RC ∪ V-MS ∪ V-PD ∪ V-ST ∪ V-AC, and E(DDG) = E-CD ∪ E-DD ∪
E-MD ∪ E-PI. The description of these sets are given in Table 4 and Table 5.

An incomplete portion of the data dependence graph for our running example
is shown in Fig. 6 (due to space restriction, we eliminate some parts of this
graph).

6.2 Data-centric and Rule-centric Policy Enforcement

For policy enforcement, we first construct the data dependence graph (DDG)
for Rebeca model, and then apply Algorithm 1 to determine whether the system

150

www.manaraa.com

Table 4. DDG nodes

Name Description

V-RC Set of reactive class nodes

V-PD Set of private data nodes

V-MS Set of message server nodes

V-ST Set of statement nodes

V-AC Set of activation nodes

Table 5. DDG edges

Name Description

E-CD Set of control dependence edges

E-DD Set of data dependence edges

E-MD Set of member dependence edges

E-PI Set of parameter-in edges

satisfies the data-centric and rule-centric policies. This algorithm, gets a data
dependence graph, an actor’s private data item (pv), the sets of data-centric
and rule-centric policies as the inputs. First, the set of all nodes which can affect
the given private data is computed (lines 1-5). To check data-centric policies,
all message servers that have access to pv (possibly passed through a series of
messages or assignments) are selected (lines 6-7). Then, the corresponding pur-
pose of each such message server (determined by FindPurpose(v)), is checked
against the data-centric policies (lines 8-10). To check rule-centric policies, all
send statements that potentially send pv as a parameter (again, possibly indi-
rectly) are selected (lines 11- 12). Then, the permission of such communication is
checked against the rule-centric policies (lines 13-15). For complete data-centric
and rule-centric policy enforcement, this algorithm must be run for all private
data in the system.

Algorithm 1 Purpose-based policy enforcement algorithm

Input: A dependence graph DDG = {V-RC ∪V-MS ∪V-PD ∪V-ST ∪V-AC , E-CD ∪
E-DD ∪E-MD ∪E-PI}, one actor’s private data item in form of (owner , pv), the
set of data-centric policies DCPolicy and the set of rule-centric policies RCPolicy

Output: Does DDG satisfy DCPolicy and RCPolicy for (owner , pv)?
1: S ← ReachableFrom(DDG, pv) // Using Depth First Search
2: For each v ∈ S
3: For each u ∈ V (DDG)
4: If ((u, v) ∈ E-CD ∧ u /∈ S)
5: S ← S ∪ {u}
6: For each v ∈ S
7: If (v ∈ V-MS) // If v is a message server node
8: If ((pv, F indPurpose(v)) /∈ DCPolicy){
9: DCPCounterExample ← (pv ,FindPurpose(v))

10: Return False }
11: For each v ∈ S
12: If (v ∈ V-AC) // If v is an activation node
13: If ((FindActor(v), pv ,FindPurpose(v)) /∈ RCPolicy){
14: RCPCounterExample ← (FindActor(v), pv ,FindPurpose(v))
15: Return False }
16: Return True

151

www.manaraa.com

Fig. 6 shows an example execution of Algorithm 1. The inputs of this example
are the data dependence graph of our running example, the sets of policies shown
in Table 1 and Table 2, and student’s CPersonal private data item. As shown
in Fig. 6, CPersonal can be used in Query message server with the purpose of
Consulting. As the pair (student’s CPersonal, Consulting) is not a member of
Table 1, the algorithm indicates a violation of the data-centric policy. This vi-
olation occurs because SetMoreInfo message server (with Registration purpose)
assigns CPersonal to a state variable while Query message server (with Con-
sulting purpose) uses this state variable and sends its value to another actor.
Although the actor is eligible to access its own state variable, its access should
be controlled when it contains private data.

Fig. 6. Applying Algorithm 2 to DDG of running example for the sets of policies shown
in Table 1 and Table 2, and student’s CPersonal private data item. The gray nodes are
nodes which have access to CPersonal private data item.

7 Data Disclosure Analysis

In addition to policy enforcement, we can analyze the disclosure of private data
in an actor system. This analysis needs to determine each actor in the system
can access which private data of other actors. This access can be done in one of
the following forms:

1. Direct receive: the owner of private data directly sends its private data to
another actor.

152

www.manaraa.com

2. Indirect receive: an actor sends private data of another actor to a third actor.
3. Receive by inferring: the actors can infer other actors’ private data based on

some inference rules (these rules are defined based on data model or message
model of the system).

In this paper we only consider the first two forms, and receive by inferring is
remained as our future work.

For data disclosure analysis, we introduce Algorithm 2 based on data de-
pendence graph analysis. In this algorithm, first the set of all nodes which can
affect the given private data item, is computed (lines 2-6), and then the parent
of each message server node in this set, is added to the output set (lines 7-9).
The function Parent(v) returns an actor node which v is a member of it. The
output of this algorithm is the set of actors which can know the input private
data item.

Algorithm 2 Data disclosure analysis algorithm

Input: A dependence graph DDG = {V-RC ∪V-MS ∪V-PD ∪V-ST ∪V-AC , E-CD ∪
E-DD ∪ E-MD ∪ E-PI}, one actor’s private data item in form of (owner , pv)

Output: ActorsKnownpv (the set of actors which can know pv)
1: ActorsKnownpv ← ∅
2: S ← ReachableFrom(DDG, pv) // Using Depth First Search
3: For each v ∈ S
4: For each u ∈ V (DDG)
5: If ((u, v) ∈ E-CD ∧ u /∈ S)
6: S ← S ∪ {u}
7: For each v ∈ S
8: If (v ∈ V-MS) // If v is a message server node
9: ActorsKnownpv ← ActorsKnownpv ∪ {Parent(v)}

10: Return ActorsKnownpv

If the result of this algorithm indicates the existence of data disclosure, de-
spite the system satisfies the purpose-based policies, the purposes and policies
must be reviewed.

8 Conclusion and Future Work

In this paper, we provided a way for purpose-based policies enforcement in actor-
based systems with the aim of avoiding disclosure of private data in such systems.
We modeled purposes using Petri nets, and make sure that the system works
exactly according to them by model checking and if needed, correction of the
system model. Then the data-centric and rule-centric policies are checked by
analysis of the data dependence graph of the system. Data disclosure analysis
algorithm has also been introduced, which can be used for evaluating of the
effect of purpose-based policies on disclosure of data. However, this analysis can
be used for each actor model to specify the distribution of data among actors.

153

www.manaraa.com

Using our method, we can statically check that in a distributed asynchronous
system there is no privacy violation. Since we model purposes using workflows,
our method is usable for practitioners. All of our analysis are performed statically
at system design time so, no runtime overhead is imposed on the system.

In future work, we intend to consider receive by inferring, as well as direct
and indirect receive, for data disclosure analysis, which needs to apply required
inference rules in our analysis. We also interest to provide a runtime monitoring
mechanism for purpose-based policy enforcement in actor systems. This extends
the scope of our method to the systems in which policies may change during
time.

References

1. Agha, G.A.: ACTORS - a model of concurrent computation in distributed systems.
MIT Press series in artificial intelligence. MIT Press (1985)

2. Solove, D.J. : A Taxonomy of Privacy. University of Pennsylvania Law Review, Vol.
154, No. 3, pp. 477–560 (2006)

3. Tschantz, M., Wing, J.: Formal Methods for Privacy. In: 2nd World Congress on
Formal Methods, pp. 1–15. Springer-Verlag, Berlin, Heidelberg (2009)

4. Rath, A.T., and Colin, J.N.: Modeling and expressing purpose validation policy
for privacy-aware usage control in distributed environment. Proceedings of the 8th
International Conference on Ubiquitous Information Management and Communica-
tion, ACM New York, NY, USA (2014)

5. Jafari, M., Safavi-Naini, R., Sheppard, N.P.: Enforcing Purpose of Use via Work-
flows. In: Proceedings of the 8th ACM workshop on Privacy in the electronic society
(WPES ’09), pp. 113–116. ACM New York (2009)

6. Masellis, R.D., Ghidini, CH., Ranise, S.: A Declarative Framework for Specifying
and Enforcing Purpose-Aware Policies. In: Foresti, S. (eds.) Security and Trust
Management. LNCS, vol. 9331, pp. 55–71. Vienna, Austria (2015)

7. Masoumzadeh, A., Joshi, J.B.D.: PuRBAC: Purpose-Aware Role-Based Access Con-
trol. In: Meersman, R., Tari, Z. (eds.) On the Move to Meaningful Internet Systems:
OTM 2008. LNCS, vol. 5332, pp. 1104–1121. Springer, Heidelberg (2008)

8. Jawad, M., Alvarado, P.S., Valduriez, P.:Design of PriServ, a privacy service for
DHTs. In: PAIS ’08 Proceedings of the 2008 international workshop on Privacy and
anonymity in information society , pp. 21–25. ACM New York, USA (2008)

9. Byun, J., Bertino, E., Li, N.: Purpose based access control of complex data for
privacy protection. In: Proceedings of the tenth ACM symposium on Access control
models and technologies, pp. 102–110. New York, USA (2005)

10. Ni, Q., Bertino, E., Lobo, J., Brodie, C., Karat, C., Karat, J., Trombeta, A.:
Privacy-aware role-based access control. ACM Transactions on Information and Sys-
tem Security (TISSEC). Vol. 13 ,Issue 3, 24:1–24:31 (2010)

11. Tschantz, M.C., Datta, A., Wing, J.M.: Formalizing and Enforcing Purpose Re-
strictions in Privacy Policies. In: IEEE Symposium on Security and Privacy (SP),
pp. 176–190. IEEE (2012)

12. Jafari, M., Safavi-Naini, R., Fong, P.W.L, Barker, K.: A Framework for Expressing
and Enforcing Purpose-Based Privacy Policies. ACM Transactions on Information
and System Security (TISSEC). Vol. 17, Issue 1, 3:1–3:31 (2014)

13. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.: Modeling and verification of
reactive systems using Rebeca. Fundamenta Informaticae 63, 385–410 (2004)

154

www.manaraa.com

14. Kabir, M.E., Wang, H.: Conditional purpose based access control model for pri-
vacy protection. In: Proceedings of the Twentieth Australasian Conference on Aus-
tralasian Database, pp. 135–142, Vol. 92, Australia (2009)

15. Ronne, J.: Leveraging Actors for Privacy Compliance. In: Proceedings of the
2nd edition on Programming systems, languages and applications based on actors,
agents, and decentralized control abstractions (AGERE! 2012), pp. 133–136. ACM
New York, (2012)

16. Lohmann, N., Verbeek, E., Dijkman, R.: Petri Net Transformations for Business
Processes – A Surveys. In: Jensen, C., Aalst, W.M.P. (eds.) Transactions on Petri
Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 46–63. Springer
Berlin Heidelberg (2009)

17. Reisig, W.: Petri Nets, An Introduction. EATCS Monographs on Theoretical Com-
puter Science, Springer-Verlag Berlin Heidelberg (1985)

18. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge tracts in theoretical
computer science, vol. 18. Cambridge University Press, Cambridge (1990)

19. Web Services Business Process Execution Language Version 2.0, OASIS Stan-
dard, April 11, 2007, OASIS (2007), http://docs.oasis-open.org/wsbpel/2.0/
OS/wsbpel-v2.0-OS.pdf

20. OMG: Business Process Modeling Notation (BPMN) Version 2.0., Object Man-
agement Group (2011), http://www.omg.org/spec/BPMN/2.0/

21. Aalst, W.M.P.: The Application of Petri nets to Workflow Management. The Jour-
nal of Circuits, Systems and Computers, vol. 8, no. 1, 21–66 (1998)

22. Aalst, W.M.P.: Three Good Reasons for Using a Petri-Net-Based Workflow Man-
agement System. Information and Process Integration in Enterprises, Vol. 428, The
Springer International Series in Engineering and Computer Science, 161–182 (1998)

23. Sabouri, H., Sirjani, M.: Slicing-based Reductions for Rebeca. In: Proceedings of
FACS08, pp. 209–224. Elsevier ENTCS Post-proceedings (2008)

24. RMC (Rebeca Model Checker) tool (2016), http://www.rebeca-lang.org/wiki/
pmwiki.php/Tools/RMC

155

www.manaraa.com

Quality-Aware Reactive Programming for the
Internet of Things

José Proença? and Carlos Baquero??

HASLab, INESC TEC and Univ. of Minho, Portugal
{jose.proenca,cbm}@di.uminho.pt

Abstract. The reactive paradigm recently became very popular in user-
interface development: updates, such as the ones from the mouse or the
network, can trigger a chain of computations organised in a dependency
graph, letting the underlying engine control the scheduling of these com-
putations. In the context of the Internet of Things, typical applications
deploy components in distributed nodes and employ a publish-subscribe
architecture. The paradigm for Distributed Reactive Programming mar-
ries these two concepts, treating each distributed component as a reactive
computation. However, existing approaches either require expensive syn-
chronisation mechanisms or they do not support pipelining, i.e., allowing
multiple “waves” of updates to be executed in parallel.
We propose Quarp (Quality-Aware Reactive Programming), a scalable
and lightweight mechanism aimed at the IoT to orchestrate components
triggered by updates of data-producing components or of aggregating
components. This mechanism appends meta-information to messages be-
tween components capturing the context of the data, used to dynamically
monitor and guarantee useful properties of the dynamic applications.
These include the so-called glitch freedom, time synchronisation, and
geographical proximity. We formalise Quarp using a simple operational
semantics, provide concrete examples of useful instances of contexts, and
situate our approach in the realm of distributed reactive programming.

Keywords: Reactive programming, component-based systems, pervasive sys-
tems, distributed systems, failure.

1 Introduction
Reactive programming is a paradigm that uses functions defined over streams of
data, rather than the more traditional functions over values. Data sources are
? Partially financed by the personal FCT grant SFRH/BPD/91908/2012. The research
leading to these results has received funding from the European Union’s Horizon 2020
- The EU Framework Programme for Research and Innovation 2014-2020, under
grant agreement No. 732505.

?? Project “TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of Concept
with Industrial Impact/NORTE-01- 0145-FEDER-000020” is financed by the North
Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL
2020 Partnership Agreement, and through the European Regional Development
Fund (ERDF).

156

www.manaraa.com

producers of data streams, and functions produce new streams based on their in-
put streams. Producing a new value triggers a wave of functions that process the
new values. This paradigm became especially popular among developers of user-
interfaces and reactive web pages [1,2,3,4], helping to manage the dependencies
between updates (from the mouse, keyboard, network, etc.) and the display.

Recent attempts bring this paradigm to a distributed setting [5,6,7], carry-
ing new challenges. Consider, for example, a twitter message (a tweet) being
posted, consequently activating two independent services: one to make the tweet
available, and one to notify all subscribers. Currently it is possible for a twitter
client to be notified without the tweet being made available, leading to a glitch
– a temporarily inconsistent state. In (non-distributed) reactive programming
this is typically solved by scheduling the client execution after the executions of
both the twitter data feeds and the notification engine. However, in a distributed
setting some different, and leaner, coordination approach is required.

Distributed reactive programming [8] can attempt to fix this problem by
adding extra constraints to ensure that all processing occurs on globally coordi-
nated rounds. While this is simple and accurate, strong coordination does not
scale well as more and more components need to agree on an order of execution,
and faster components may have to wait for slower ones to catchup. Distributed
systems are prone to regular failures on message transmission and transient
partitions [9], calling for weaker coordination among components. In networks
of low-resource devices such as the ones used by the LooCI middleware [10],
common in the IoT, computation and communication is kept to a minimum to
preserve energy, and it is often unrealistic to assume reliable communication.

This paper proposes Quarp – quality aware reactive programming – a more
flexible approach to source coordination that rethinks on the amount of out-of-
synchrony that qualifies as a genuine glitch, i.e. one that induces incorrect results.
For instance, when combining slow varying data sources, such as environmental
temperature, sensible outputs can still be derived when measurements are a few
seconds apart. Reducing the synchronization requirements makes the overall
system more resilient and fault tolerant. The key to this is to associate meta-
data to data emitted by a source, and to assume a realistic network infrastructure
where messages are eventually delivered, but can transiently be lost or received
out of order. A tradeoff is to allow data loss, and still be able to progress when
data goes through with sufficient synchronization quality. The alternative, of
trying to act on all data, can easily stall all activity in complex deployments.

The key contributions of this paper are the formalisation of a core reactive
language tailored for the IoT, that: (1) measures the quality of incoming mes-
sages; (2) can guarantee properties such as glitch-freedom; (3) supports more
relaxed notions such as “data sources are located nearby” and “glitch-freedom
with an error margin” ; and (4) can be used in lightweight nodes since it does
not rely on heavy computations or complex coordination protocols.

Organisation of the paper. Section 2 introduces the key challenges addressed by
Quarp via a motivating example. Section 3 formalises the semantics of a simple
pseudo-language for reactive programs: first without quality awareness, and later

157

www.manaraa.com

t1

t2

w1,2

h1

h2

avgt

avgh
feelsLike

wind

wdw
closeWindow

Fig. 1. Application that reacts to sensor values to either notify to close the window or
to produce a feels-like value.

extended with quality attributes. Section 4 illustrates the generality of Quarp
by exploring different notions of quality useful in reactive programs. Section 5
discusses the key advantages and disadvantages of our approach with respect
to existing approaches to distributed reactive programming. Finally, Sections 6
and 7 present related work and main conclusions, respectively.

2 Motivation: composition of reactive IoT components

We use as a running example a simple distributed reactive application in the con-
text of the Internet of Things (IoT), where different sensors produce values that
are aggregated and displayed by different services. This example motivates our
approach and helps explaining the design choices that influenced our framework.

The reactive application in Figure 1 is composed of: data sources (), ob-
servers (), and mixed components (). The data sources t1, t2 represent
temperature sensors, h1, h2 represent humidity sensors, wind represents a wind
sensor, wdw the open/closed status of a window, and w1,2 produces weights used to
average sensor values. The avgt and avgh components calculate the weighted aver-
ages of temperature and humidity, respectively. Finally, the observers closeWindow
and feelsLike are capable of producing side effects, namely to send a warning
to close a window and to display a feels-like temperature value, respectively.

This IoT example illustrates some possible challenges that can occur when
managing dataflows triggered by new values being produced by data sources.
Glitches. A glitch can occur, for example, if w1,2 produces a value, triggering
avgt and avgh to recalculate the averages, and later feelsLike updates its value
after receiving a new value from avgt but before receiving from avgh.
Timestamps. Alternatively, the feelsLike observer may chose to inspect the
timestamps for when the original data sources produced the readings, and decide
on whether these are within an acceptable time window.
Geo-location The physical proximity of the sensors could also be considered
when deciding on whether the input values of feelsLike should be taken together.

Context & Quality
The concept of how good are the input parameters of a given service call, with
respect to the original source of the data, is captured in Quarp by what we call

158

www.manaraa.com

the context of a message, and the quality of a context. Furthermore, we do not
fix upfront what a context and a quality measurement are. Instead, we specify
simple properties of contexts and operations, and properties of operations that
must be defined over contexts and qualities. We also provide concrete examples
of contexts and qualities that we found useful for reactive programs.

As a running example we will focus on glitch-freedom. We will use a simple
context that labels every message with pairs of values, each containing a globally
unique ID of a data source and the value of a local grow-only counter of the
same data source. Every data source component starts by labelling its published
values with a pair with its ID and counter value; every service that aggregates
data, such as avgt, labels its published values with the joint labels of its input
arguments. These labels are used to provide glitch-freedom guarantees, which is
a typical concern in reactive programming. More complex labels, described later
in this paper, can also include location information and wall-clock time sources.

More generally, contexts are expected to form a commutative monoid, i.e., to
be able to be composed via an associative and commutative operator, and their
associated qualities are expected to form a bounded semi-lattice, i.e., to have a
partial order over possible qualities and to have a minimal quality.

Observe that, since every context is expected to have an associated quality,
one could merge the concepts of context and quality, and require this merged
qualified context to form both a commutative monoid and a bounded semi-
lattice. We decided to keep this split for readability. Our notion of context and
quality is inspired in constraint semirings [11], which possess two binary opera-
tors. One is similar to our composition of contexts, and the other is an idempotent
operator that induces a partial order similar to our bounded semi-lattice.

3 Quarp: Quality-Aware Reactive Programming

We formalise the Quarp framework, generalising the notions of context and qual-
ity, and providing different examples of concrete instantiations for contexts and
qualities. Components in a reactive system receive data by their source ends and
publish data on their sink ends. A component is called a data source if it has no
source ends, observer if it has no sink ends, and mixed component otherwise.

This section starts by formalising reactive programs, followed by an extension
with quality-aware semantics and examples of useful quality metrics.

3.1 Basic reactive programs

A reactive program p is formally a set of component definitions, each written as
c ← func(arg), where func is a function with a list of arguments arg, and each
argument a ∈ arg can be either a constant or a component. Our example in
Figure 1 can be written as in Figure 2, where the interpretation of the functions
is expected to be defined elsewhere. In practice, this abstraction of a reactive
program could be derived from the source code of the individual components.

159

www.manaraa.com

t1← getTemp("North")
t2← getTemp("South")
w12← getWeights()
h1← getHum("North")
h2← getHum("South")
wdw← getWindowStatus()

wind← getWind()
avgt← calc-avg(t1,t2,w12)
avgh← calc-avg(h1,h2,w12)
closeWindow← notifyWindow(wdw,avgt)
feelsLike← publishFL(avgt,avgh,wind)

Fig. 2. Encoding of the program in Figure 1.

Given a program p we say c2 subscribes to c1, written c1 ≺p c2, if p contains
c2 ← func(...,c1,...). We omit p in ≺ when clear from context. In our example
program we say that the avgt component subscribes to the components t1, t2,
and w12, written t1 ≺ avgt, t2 ≺ avgt, and w12 ≺ avgt. Hence ≺ defines a
dependency graph between components, starting from the source components.
Informal runtime semantics Components communicate via a publish-sub-
scribe mechanism, as in our IoT example. A program starts when a source com-
ponent produces a value to be published. For example, when t1 decides to publish
the value 17. It places the value in an output buffer linked to avgt, representing
the (non order-preserving) network communication. In turn, components like
avgt have input buffers, one for each input, storing their last received value.

The program proceeds when the network atomically transfers one of its values
to an input buffer. In our example, the networks transfers the output value 17
to the input buffer of avgt. Previously stored data in this buffer is overwritten,
even if it was not processed yet by avgt, simulating failure in the communication.

Once the avgt service receives a new value, it checks if all its input values are
ready, i.e., if all their associated input buffers are non-empty. This will only be
the case after both t1 and w12 publish values that arrive to avgt. Upon receiving
an update for one of its buffers, avgt calculates an average value based on its
three parameters and places the result in its output buffer, which buffers data
going to two components: closeWindow and feelsLike.

Note that, even though mixed components and observers can only process
parameters when these are updated, these components can decide to ignore
incoming messages, even if all the buffers are non-empty. This effectively mimics
data being lost, since newer messages override previously received ones.
Formal runtime semantics Let C be the set of all components, D the domain
of data produced by components, PX the set of all sets over X, and MX the set
of all multisets over X. The runtime semantics of a reactive program is modelled
by the evolution of so-called input and output buffers.
– Every source and mixed component c ∈ C has exactly one output buffer,

written outc : C →MD, responsible for storing event data values published
by c until they are consumed by its subscribers.

– Every observer and mixed component c ∈ C has exactly one input buffer,
written inc : C → (D∪{−}), used to store the last value used by each input
of c, whereas “−” represents the absence of a value used by a given input.

160

www.manaraa.com

inc = ∅
〈I,O〉 ?c−→ 〈I,O〉

(src)
outc ∈ O d ∈ outc(c′)

〈I,O〉 ?c′
−−→ 〈I + (c, d, c′), O − (c, d, c′)〉

(rcv)

〈I,O〉 ?c−→ 〈I ′, O′〉 activeI′ (c) evalI′ (c) = d

〈I,O〉 !c,d−−→ 〈I ′, O′ + (c, d)〉
(pub)

Fig. 3. Operational semantics of basic reactive components.

For example, outw12 = {avgt 7→ {17, 19} , avgh 7→ {19}} means that the compo-
nent avgt has pending values 17 and 19 from w12, and avgh has only a pending
value 19 from w12. Regarding input buffers, incloseWindow = {avgt 7→ 18, wdw 7→
open} means that the component closeWindow has previously used the values 18
and open as input from avgt and wdw, respectively, and incloseWindow = {avgt 7→
18, wdw 7→ −} means that closeWindow never received a value from wdw before.

The use of multisets in input buffers instead of sequences captures the lack of
order guarantees in the sending of messages. The state of a reactive program p
is therefore captured by the set of all input and output buffers Ip and Op in p,
written 〈Ip, Op〉. We write I and O to represent the set of all possible input and
output buffers, respectively, and drop the program p in subscript when clear.

Finally the semantics of a reactive program is given by the rules in Figure 3,
labelled by pairs ?c denoting that c is ready to be executed, and !c, d denoting
that c published the value d. The rule (src) represents a source component be-
coming ready to publish a value, the rule (rcv) represents a data value being
delivered to a given component, and the rule (pub) represents a connector pub-
lishing a given data value. These rules use the auxiliary functions activeI, evalI,
O + (c, d), O − (c, d, c′), and I + (c, d, c′), defined as follows.

• activeI : P C. Predicate that says whether a given component c is active by
checking if all its input buffers contain a value. Formally, c ∈ activeI , also written
as activeI(c), holds if for all c′ ≺ c, inc(c′) 6= −, where inc ∈ I.
Example: activeI(avgt) means that avgt is ready to be executed, i.e., inavgt(t1) 6=
−, inavgt(t2) 6= −, and inavgt(w12) 6= −, where inavgt ∈ I.
• evalI : C → D. Function that, given the current buffers I and a connector c
where c ← func(args), (1) calculates args′ by replacing in args all occurrences
of input components c′ by their last received value inc(c′) (where inc ∈ I), and
returns the result of evaluating func(args′).
Example: evalI(avgt) = 17.6 means that the result of evaluating calc-avg(t1,t2,w12),
after replacing t1, t2, and w12 by the values in I, is 17.6.

• O + (c, d) : O and O − (c, d, c′) : O. Functions that add and remove data to
output buffers in O, respectively. Formally, when outc ∈ O then: (1) O+(c, d) =
{outc + d}∪(O\ {outc}), where outc+d = {cout 7→ (M ∪ d) | (cout 7→M) ∈ outc};
and (2) O− (c, d, c′) = {outc − (d, c′)}∪ (O\ {outc}), where (outc− (d, c′))(e) =
if (e = c′) then outc(e)− {d} else outc(e).

161

www.manaraa.com

• I + (c, d, c′) : I. Function that updates the buffers I by replacing the
previous value of inc′(c) with d. Formally, when inc′ ∈ I then I + (c, d, c′) =
{inc′ + (c, d)}∪(I\ {inc′}), where (inc′+(c, d))(e) = if (e = c) then d else inc′(e).
Example Consider our running example from Figure 1. Initially the input and
output buffers I and O are empty, defined as follows:

I = {inc | c ∈ {avgt,avgh,closeWindow,feelsLike}}
inc = {c′ 7→ − | c′ ≺ c}
O = {outc | c ∈ {t1,t2,w12,h1,h2,wdw,wind,avgt,avgh}}

outc = {c′ 7→ ∅ | c ≺ c′}

A possible trace that triggers the execution of closeWindow without data losses
or re-orderings is, for some Ik and Ok with k ∈ {1, . . . , 6}:

〈I,O〉 !t1,17−−−→ 〈I1, O1〉 !w12,〈0.6,0.4〉−−−−−−−−→ 〈I2, O2〉 !wdw,open−−−−−→ 〈I3, O3〉
!t2,19−−−→ 〈I4, O4〉 !avgt,17.8−−−−−−→ 〈I5, O5〉 !closeWindow,−−−−−−−−−→ 〈I6, O6〉

If a label starting with ? appears in a trace, it represents a trigger that was never
used by a publish rule, i.e., data that was received but not used. After this trace,
the input and output buffers in the state 〈I6, O6〉 should have updated into the
following ones:

inavgt = {t1 7→ 17, t2 7→ 19, w12 7→ 〈0.6, 0.4〉}
incloseWindow = {wdw 7→ open, avgt 7→ 17.8}

outw12 = {avgt 7→ ∅, avgh 7→ 〈0.6, 0.4〉}
outavgt = {closeWindow 7→ ∅, feelsLike 7→ 17.8}

In this final state w12 and avgt published values that were not delivered yet, and
avgt and closeWindow updated their input buffers with their last received values.

3.2 Adding Quality Awareness

We extend sources and mixed components to produce not only streams of data
d1, . . . , dn, but also to: (1) mark each produced data with a context Γ attribute,
written Γ ` d, and (2) to compute a quality value Q = ([Γ]) of contexts used to
filter low-quality messages.
Context We write G to denote the set of all contexts, and QD to denote the set
of data extended with a context. A data value Γ ` d ∈ QD represents a value d ∈
D that was calculated based on sources with context that were combined into
Γ ∈ G via an associative and commutative operator ⊗. Hence, choosing a monoid
(G,⊗) defines what is a context and how are contexts composed.
Quality We write Q to denote the set of all quality values, and the function
([·]) assigns quality values to contexts. Quality values form a bounded join semi-
lattice (Q,⊕), where the partial order is defined in the usual way: (Q1 ≤ Q2)⇔

162

www.manaraa.com

(Q1⊕Q2 = Q2). We write Q ∈ Q to range over quality values, and ∅Q to denote
the minimal quality. Hence, choosing the semi-lattice (Q,⊕) defines what is a
quality value and their order, and ([·]) defines how to qualify contexts.

Summarising, different reactive behaviours can be attained by using differ-
ent definitions of the context monoid (G,⊗), the semi-lattice (Q,⊕), and the
qualification function ([·]).
Example: Glitch-freedom

We instantiate the structures G and Q, and the operator ([·]) as follows.

– G = P (C × K) are sets of pairs that associate the (globally unique) ID of
source components to the value of a local grow-only counter. Contexts are
combined via set union, i.e., ⊗ = ∪ with identity ∅.

– Q = {⊥,>} are booleans indicating whether data is has glitches (⊥) or not
(>), and ⊕ = ∨ and ∅Q = ⊥. Observe that ⊕ induces the order ⊥ ≤ >.

– ([Γ]) = ∀(s1, k1), (s2, k2) ∈ Γ · s1 = s2 ⇒ k1 = k2 returns true if the context
is glitch-free, i.e., if the same source is always mapped to the same identifier.

The order of the quality lattice is used by the runtime semantics (below), by
allowing only values with a certain minimal quality Qmin to be published, and
discarding the data value otherwise. In this glitch-freedom example, a sensible
Qmin would be >, meaning that only glitch-free values can be published.

Using the IoT running example with this glitch-freedom context, assume this
program starts by t1, t2, and w12 publishing the values 17, 19, and 〈0.6, 0.4〉,
respectively. Using quality-awareness, each of these values are marked with a
context value, e.g., {(t1, 0)} ` 17, {(t2, 0)} ` 19, and {(w12, 0)} ` 〈0.6, 0.4〉. The
service avgt, upon receiving these three values, combines their contexts calcu-
lating {(t1, 0)} ⊗ {(t2, 0)} ⊗ {(w12, 0)}, obtaining Γ = {(t1, 0), (t2, 0), (w12, 0)}.
It then calculates the quality of this context ([Γ]) = >, indicating that the com-
bined context is glitch-free (Qmin ≤ ([Γ])). This gives green light to proceed, i.e.,
avgt will calculate calc-avg(17,19,(0.6,0.4)) = 17.8 and publish Γ ` 17.8 to its
buffer linked to closeWindow and feelsLike.

If, at some point in the execution, feelsLike receives Γ ` 17.8 from avgt and
some value Γ ′ ` v from avgh, it will combine Γ ⊗ Γ ′ and calculate its quality.
This quality will yield > if and only if Γ ′(w12) = 0, i.e., if the only shared
data source of avgt and avgh (w12) has the same associated counter value (0).
Otherwise ([Γ ⊗ Γ ′]) = ⊥ and feelsLike does not publish a new value.

Formal runtime semantics This subsection extends the previous runtime
semantics from Section 3, extending the domain from D to QD. The minimum
quality for publishing a value is a globally defined constant Qmin, such that
Qmin ≤ Q means that the quality Q is good enough for publishing.

In this extended semantics the output buffer of each component c is now over
QD, i.e., c : C → PQD. The functions activeI , evalI , O + x, O − x, and I + x
are trivially adapted to data values in QD where necessary, and we replace the
rule (pub) by two new rules that publish only when the minimal quality is met.
For example, d ∈ outc(c′) is now written as Γ ` d ∈ outc(c′).

163

www.manaraa.com

〈I,O〉 ?c−→ 〈I ′, O′〉 activeI′ (c) evalI′ (c) = d
cxtI′ (c) = Γ Qmin≤ ([Γ])

〈I,O〉 !c,(Γ ` d)−−−−−−→ 〈I ′, O′ + (c, (Γ ` d))〉
(pubX)

〈I,O〉 ?c−→ 〈I ′, O′〉 activeI′ (c)
cxtI′ (c) = Γ Qmin� ([Γ])

〈I,O〉 !c,−−−→ 〈I ′, O′〉
(pub7)

Fig. 4. Publishing rules for the quality-aware extension.

The new quality-aware semantics uses the same rules (src) and (rcv) as before
(replacing d by Γ ` d), and the rule (pub) is replaced by the two new rules in
Figure 4, which describe how (and when) components publish data values with
context information. As before, the auxiliary functions used by these rules cxtB

and Qmin are presented below.
• cxtI : C → G. Function that, given an active component c, collects all contexts
from its inputs and returns their combination with ⊗. Formally, when inc ∈ I
then cxtI(c) =

⊗
c {Γ | c′ ≺ c, ∃d ∈ D · inc(c′) = (Γ ` d)}, where

⊗
c ∅ = Γc

(with Γc being the context of the source component c), and
⊗

c {Γ1, . . . , Γn} =
Γ1 ⊗ . . .⊗ Γn (with n > 0).
Example: cxtI(t1) = {(t1, 1)} means that the current context of t1 is {(t1, 1)},
and cxtI(avgt) returns the combined context Γ1⊗Γ2⊗Γ3, where inavgt(t1) = Γ1 `
d1, inavgt(t2) = Γ2 ` d2, and inavgt(w12) = Γ3 ` d3, for some d1, d2, d3 ∈ D.
• Qmin : Q. Globally defined minimum quality required to publish a value.
Example: Following our glitch-freedom example, let Q ∈ {⊥,>} and ⊕ = ∨,
inducing ⊥ ≤ >. Hence, Qmin = > means that, if Qmin ≤ x, then x must be >.

4 Beyond Glitch-Freedom: Modelling Different Contexts

Glitch-freedom is one possible distributed property that can be guaranteed dy-
namically using contexts in reactive programs. This mechanism to discard mes-
sages that violate a minimal quality standard can be applied to a variety of
quality notions. This section presents three of these.
Geographical location The context of a value produced by a data source
is now either (1) a pair of values with the geographical location where the data
value was produced, or (2) the identity context if the notion of location does not
apply. Combining contexts means collecting all possible locations, and they are
ordered by size of the smallest bounding square, i.e., better quality means closer
by locations. More precisely:

– G = P (R×R) – a context is a set of coordinates that influenced the published
value. Here ⊗ = ∪ and ∅ is the identity.

– Q = R≥0 ∪ {∞} – a quality value is a non-negative number measuring the
size of the smallest bounding square that contains all coordinates, ⊕ = min,
and ∅Q = ∞. Observe that smaller square means better quality, hence ⊕
induces a reversed order v, i.e., v1 v v2 iff v2 ≤ v1.

164

www.manaraa.com

– ([Γ]) = (max(π1(Γ)) − min(π1(Γ)))2 + (max(π2(Γ)) − min(π2(Γ)))2, where
π1 and π2 return the first and second values of the pairs in a given list,
respectively, returns the (square of) the diagonal of the smallest square that
can contain all coordinates.

– ([∅]) = 0, which captures the ideal quality.

Using these definitions of G andQ one needs only to specify a minimal quality
Qmin defining the maximal accepted distance between input sources so a value
can be published. Furthermore, data sources without an associated location (such
as w12) can simply produce the empty context ∅.

In our example, assume we define Qmin = 10 (for some distance unit) and
t1, t2, w12, h1, h2 publish the values, respectively, {(2, 3)} ` 17, {(4, 2)} ` 19,
∅ ` 〈0.6, 0.4〉, {(16, 18)} ` 56, and {(18, 20)} ` 58. In this case, both services avgt
and avgh are able to publish a value with an acceptable quality. For example, avgt
will publish a value with context Γ = {(2, 3), (4, 2)}, which has the associated
quality ([Γ]) = 22 + 12 = 5 (and 10 v 5, i.e., 5 ≤ 10). However, the service
feelsLike is not able to publish a value with the data from these sensors: the
combined context would be {(2, 3), (4, 2), (16, 18), (18, 20)}, which has a quality
of 162 + 182 = 580, wich is worse than the minimal quality 10.
Relaxed glitch-freedom This example relaxes the notion of glitch freedom,
by introducing tolerance with respect to the counters used for glitch freedom. I.e.,
small glitches are ignored and allowed, whereas a small glitch is found whenever
counters from the same source data are close enough. G and Q are defined as
before, and a fix tolerance value is used to assign a quality to contexts.

– G = P (C×K) are the same as before: pairs that associate the globally unique
ID of source components to the value of a local grow-only counter, and
⊗ = ∪. Unlike with strict glitch-freedom, the values in K must have a total
order and there must be a distance dist(k1, k2) defined between counters.

– Q = {⊥,>} are also the same: booleans indicating whether data is (relaxed)
glitch-free (>) or not (⊥).

– ([Γ]) = ∀(s1, k1), (s2, k2) ∈ Γ · s1 = s2 ⇒ dist(k1, k2) ≤ tolerance – returns
true if the distance between counters from the same data source do not differ
more than the pre-defined value tolerance.

In our example, start by defining K to be the natural numbers, dist(k1, k2) =
abs(k1 − k2), and tolerance = 1. This choice means that counters for the same
counter in different arguments can differ up to 1. For example, if feelsLike

receives an argument from avgt whose context maps w12 to a counter value ahead
by 1 from the counter of the previously received argument from avgh, the service
will still react to this input.
Wall-clock difference In some scenarios the hardware platform provides
a highly accurate wall-clock among distributed data sources, guaranteeing that
their internal clock is consistent up to a small error.1 Here one may use a context
1 This is true, for example, for modules using SmartMesh IPTM (http://www.linear.
com/products/smartmesh_ip).

165

www.manaraa.com

with a pair of bounds with the smallest and the largest timestamps, and require
their difference to be smaller than a fixed threshold. More precisely:

– G = PTS sets of relevant timestamps. Unlike in the other cases, there is no
reference to the associated data source. As before, ⊗ = ∪.

– Q = R≥0∪{∞} is a positive number denoting the largest time difference be-
tween timestamps. Similarly to geo-location, smaller values represent higher
qualities: ⊕ = min and ∅Q =∞.

– ([Γ]) = max(Γ) − min(Γ), where max(∅) = ∞ and min(∅) = 0, returns the
largest difference between timestamps.

In our example, assume that our tolerance is 5 seconds, i.e., Qmin = 5s, and that
t1, t2, w12, h1, h2 publish the values, respectively, {13:10:20} ` 17, {13:10:21} `
19, ∅ ` 〈0.6, 0.4〉, {13:15:00} ` 56, and {13:15:03} ` 58. This means that tem-
peratures and humidities are published around 5 minutes apart, the update time
of the stamps is neglectable, and pairs of the same kind of sensors are less than
5s apart. Hence, both services avgt and avgh are able to publish a value with an
acceptable quality, but the service feelslike will fail to publish a value because
the combine context will be {13:10:20, 13:10:21, 13:15:00, 13:15:03}, which has an
associated quality of more than 5 seconds.

Combining dimensions Given any two different choices for context G1, G2
and for quality Q1, Q2, these can be merged into a new context monoid G12 and
quality metric Q12 as follows.

– G12 = G1×G2 are pairs with an element from the first context and an element
from the second one.

– Q12 = Q1 × Q2 are again pairs from both qualities, where (q1, q2) ⊕12
(q′1, q′2) = (q1 ⊕1 q

′
1, q2 ⊕2 q

′
2) and ∅Q = (∅Q1, ∅Q2). Observe that (q1, q2) ≤

(q′1, q′2) when q1 ≤ q′1 and q2 ≤ q′2.
– ([(Γ1, Γ2)])12 = (([Γ1])1, ([Γ2])2) simply applies the encodings of each context.

One can easily prove that G12 is indeed a commutative monoid and thatQ is a
bounded semi-lattice. This allows the combination of any set of desired contexts;
for example, one may want to have both glitch-freedom and geographical bounds.

5 Discussion

The Quarp approach for distributed reactive programming takes inspiration in
algorithms for distributed systems that manage eventually consistent structures,
such as CRDTs [12]. It does so by appending extra meta-information to messages
that is used to help local nodes to react appropriately to inputs.

Unlike other approaches to distributed reactive programming (DRP) [6,5,13],
we claim to be more scalable, more dynamic, and better suited for non-reliable
communication. The cost for these desired properties is the possible loss of some
values, as explained below. To support these claims we start by introducing some
existing DRP approaches, and discuss each claim individually.

166

www.manaraa.com

REScala [5,13] Drechsler et al. present an algorithm to implement distributed
glitch-freedom in reactive programs, called SID-UP, and include a careful com-
parison with other approaches with respect to: (1) the number of steps, each
consisting of a round of messages from a set of components to another set of
components, and (2) the number of messages sent. Their algorithm makes the
strong assumption that rounds are synchronised, i.e., the algorithm does not sup-
port pipelining: a round starts when a set of data sources publish some value,
and it ends when no more messages are pending – a new round can only start af-
ter the previous round finished. The comparison approaches are Scala.React[14],
Scala.Rx,2 and a variation of ELM [2] that supports dynamic updates of the
topology of the reactive program (but does not support pipelining). Their ap-
proach and evaluation focuses exclusively on the performance of a single round,
while Quarp focuses on the performance of multiple (concurrent) rounds, where
pipelining is a must. Dynamic updates to the topology are not problematic in
Quarp because of the lack of a clear notion of round, and because the eventual
loss of messages during reconfiguration is already tolerated by Quarp, effectively
allowing for more unrestricted forms of reconfiguration than SID-UP.

DREAM [6] Is a Java distributed implementation with an acyclic overlay
network of brokers that support publish-subscribe communication. The com-
munication sub-system provides reliable message transmission by buffering and
re-transmission of messages, and in this case the sub-system uses point-to-point
TCP connections to provide basic FIFO properties. Several consistency guar-
anties are provided, ranging from causal consistency to a globally unique order of
delivery by way of a central coordinator. Comparatively to Quarp, the DREAM
approach is more rigid when it comes to dynamic reconfiguration. Reliable mes-
sage delivery can require considerable buffering in the communication subsystem
and can stale system availability when the network is dropping messages. In con-
trast Quarp has much weaker requirements on the communication middleware.
It allows message loss and re-ordering while still enabling the system to progress
when messages get received and the required quality criteria is met.

Scalability in Quarp Our proposed approach can scale up to a large number
of components under the assumption that the size of the contexts does not grow
too much. For example, our glitch-freedom implementation combines the local
counters of all involved data sources, which behaves well with large chains of
dependent components, but may require some attention when the number of de-
pendent data sources is large. Observe that the generality of our approach allows
customisation, e.g., defining the combination of contexts to create abstractions
that hide information regarded as unnecessary. When compared with the above
approaches, Quarp brings a large improvement with respect to the size of sup-
ported applications, since there is no need to either lock every round of data
propagation (as in REScala), nor to require certain nodes to have full knowledge
of the dependency graphs (as in DREAM). This advantage derives from the re-
laxation made that locally found inconsistencies (regarded as low quality inputs)
2 https://github.com/lihaoyi/scala.rx

167

www.manaraa.com

do not need to be fully solved, but can simply be blocked and ignored. I.e., when
an issue such as a glitch is found, the input is ignored without guarantees that
future messages will solve this glitch.
Dynamicity in Quarp Support for dynamic updates of the dependency
among components was regarded as a key requirement from REScala. So much
that the evaluation used a modified version of ELM’s propagation algorithm that
adds support for dynamic updates at the cost of losing support for pipelining,
i.e., of allowing multiple rounds to be executing in parallel. In Quarp dynamic
updates are trivially supported, again due to the fact that it accepts the possible
loss of messages as part of the intended semantics.
Failure handling in Quarp Unlike other approaches for distributed reac-
tive programming, Quarp uses the basic assumption that messages can be lost
(and re-ordered). Lost messages are not resent – instead Quarp assumes newer
messages will be more relevant, and does not try to recover from failures. This
approach targets systems such as the Internet of Things, where the cost of main-
taining a reliable communication is often too high or infeasible (due to mobility).
Furthermore, orthogonal approaches to support reliable communication, such as
TCP/IP, can be safely used with Quarp.

6 Related Work

Reactive programming is a form of event-driven programming that deals with
propagating change through a program by representing events as time-varying
values. Its most popular versions are not concurrent, focusing on local reactive
programming on a single network node and dealing with functional transforma-
tions of time-varying values [8]. Several approaches exist on top of object-oriented
languages [15,16], functional languages [2,16], and in the context of web-based
applications [1,2,3]. Most approaches enforce glitch freedom, ensuring that a
node in a dependency graph is updated only after all its antecedents are.

Distributed Reactive Programming (DRP) deals with time-varying inputs,
distributed over multiple network nodes, and with the management of depen-
dencies between concurrent components. In a distributed setting, the problem of
glitch freedom is of crucial importance, since inconsistencies may endure due to
network partitioning. Carreton et al. [17] integrate DRP with the actor model,
but do not support glitch freedom. Drechsler et al. [5] propose an efficient algo-
rithm that enables glitch free DRP for distributed programs with strong network
guarantees, but not considering highly dynamic networks, network failures and
partitioning. Margara and Salvaneschi [6] propose a Java-based framework that
offers multiple layers of consistency each having their impact on performance. It
supports glitch-freedom, but under a significant performance penalty.

Another body of related work on DRP are reactive frameworks or languages
for web programming, such as Meteor,3 Play,4 Flapjax [1], Elm [2], and Re-
3 www.meteor.com
4 www.playframework.com

168

www.manaraa.com

act.JS [3]. These are usually two-tier, client-server applications where change
either originates from user interaction with the DOM (e.g., clicking buttons) or
by server acknowledgements. The server and DOM elements are considered the
time-varying values. Even though events may originate on a remote node (the
server), the reactive program actually resides on the client and the distribution
of logic is therefore much simpler than in truly distributed reactive programs.

Quarp proposes a new approach to distributed reactive programming that
allows individual nodes to locally identify glitches. Glitches are not only identified
but also measured, based on meta-information aggregated to events. By selecting
relevant properties over measurements and over such meta-information, tradeoffs
can be made between performance and quality of the produced values. This
approach suits well cyber-physical systems because it avoids global synchronisers
or schedulers, and supports aspects such as dynamic reconfiguration.

Observe that, in the context of the IoT, other formalisations have been pro-
posed, many as calculus of concurrent nodes [18,19]. These focus on how to
accurately describe existing IoT systems and on how to reason about notions
such as behaviour equivalences. Quarp does not explore properties of the pre-
sented formal semantics; instead it experiments with a new approach to think
and design distributed applications for networks of resource-constrained devices:
by separating the concerns of reactive components with dependencies on other
components, from when to decide when data is good enough to be used.

7 Conclusion and future work

This paper proposes Quarp – a quality aware approach for distributed reactive
programming. This approach investigates how reactive languages could be used
to program distributed applications for the Internet of Things (IoT), taking into
account the presence of resource-constrained devices, high mobility, and unre-
liable communication. Furthermore, data from sensors have often some redun-
dancy (older values are less important than new ones), making current reactive
paradigm too synchronization heavy, possibly leading to never-ending waits for a
message that has been lost. Our solution is to locally find unwanted inconsisten-
cies, discarding data when they are found. Quarp is general enough to capture a
range of possible inconsistencies, using attributes that must be “good enough” to
be considered consistent. Hence Quarp, by not requiring messages to be always
delivered, provides better performance (no need to agree with neighbours), scala-
bility (large number of components can be executing in parallel), and availability
(the system does not deadlock upon lost messages), while still guaranteeing that
the messages are consistent, for some relaxed notion of consistency.

Our future work is two fold. On one hand we plan to apply Quarp to a con-
crete domain, exploring instances of quality attributes and performing a com-
prehensive evaluation. On the other hand we expect to use our formalisation to
reason about reactive programs, e.g., defining notions of bisimulation to compare
or minimize programs, to prove properties over reactive programs in Quarp.

169

www.manaraa.com

References

1. L. A. Meyerovich, A. Guha, J. P. Baskin, G. H. Cooper, M. Greenberg, A. Brom-
field, and S. Krishnamurthi, “Flapjax: a programming language for ajax applica-
tions,” in OOPSLA. ACM, 2009, pp. 1–20.

2. E. Czaplicki, “Elm: Concurrent FRP for functional GUIs,” Master’s thesis, Har-
vard, 2012.

3. C. Gackenheimer, “What is react?” in Introduction to React. Springer, 2015, pp.
1–20.

4. B. Reynders, D. Devriese, and F. Piessens, “Multi-tier functional reactive program-
ming for the web,” in Onward! ACM, 2014, pp. 55–68.

5. J. Drechsler, G. Salvaneschi, R. Mogk, and M. Mezini, “Distributed rescala: an
update algorithm for distributed reactive programming,” in OOPSLA. ACM,
2014, pp. 361–376.

6. A. Margara and G. Salvaneschi, “We have a DREAM: distributed reactive pro-
gramming with consistency guarantees,” in DEBS. ACM, 2014, pp. 142–153.

7. G. Salvaneschi, A. Margara, and G. Tamburrelli, “Reactive programming: A walk-
through,” in ICSE (2). IEEE Computer Society, 2015, pp. 953–954.

8. E. Bainomugisha, A. L. Carreton, T. v. Cutsem, S. Mostinckx, and W. d. Meuter,
“A survey on reactive programming,” ACM Comput. Surv., vol. 45, no. 4, pp.
52:1–52:34, Aug. 2013.

9. P. Bailis and K. Kingsbury, “The network is reliable,” Commun. ACM, vol. 57,
no. 9, pp. 48–55, Sep. 2014.

10. D. Hughes, K. Thoelen, J. Maerien, N. Matthys, J. Del Cid, W. Horre, C. Huygens,
S. Michiels, and W. Joosen, “LooCI: The loosely-coupled component infrastruc-
ture,” in proceeding of NCA, 2012, pp. 236–243.

11. S. Bistarelli, U. Montanari, and F. Rossi, “Semiring-based constraint satisfaction
and optimization,” J. ACM, vol. 44, no. 2, pp. 201–236, Mar. 1997.

12. M. Shapiro, N. M. Preguiça, C. Baquero, and M. Zawirski, “Conflict-free replicated
data types,” in SSS, ser. Lecture Notes in Computer Science, vol. 6976. Springer,
2011, pp. 386–400.

13. J. Drechsler and G. Salvaneschi, “Optimizing distributed REScala,” in Workshop
on Reactive and Event-based Languages & Systems (REBLS), 2014.

14. I. Maier and M. Odersky, “Deprecating the Observer Pattern with Scala.React,”
École Polytechnique Fédérale de Lausanne, Tech. Rep. EPFL-REPORT-176887,
May 2012.

15. G. Salvaneschi, G. Hintz, and M. Mezini, “REScala: Bridging between object-
oriented and functional style in reactive applications,” in Proceedings of the 13th
international conference on Modularity. ACM, 2014, pp. 25–36.

16. A. Courtney, “Frappé: Functional reactive programming in java,” in PADL, ser.
Lecture Notes in Computer Science, vol. 1990. Springer, 2001, pp. 29–44.

17. A. L. Carreton, S. Mostinckx, T. V. Cutsem, and W. D. Meuter, “Loosely-coupled
distributed reactive programming in mobile ad hoc networks,” in TOOLS (48),
ser. Lecture Notes in Computer Science, vol. 6141. Springer, 2010, pp. 41–60.

18. I. Lanese, L. Bedogni, and M. D. Felice, “Internet of things: a process calculus
approach,” in SAC. ACM, 2013, pp. 1339–1346.

19. R. Lanotte and M. Merro, “A semantic theory of the internet of things - (extended
abstract),” in COORDINATION, ser. Lecture Notes in Computer Science, vol.
9686. Springer, 2016, pp. 157–174.

170

www.manaraa.com

Implementing Open Call-by-Value

Beniamino Accattoli1 and Giulio Guerrieri2

1 INRIA, UMR 7161, LIX, École Polytechnique, beniamino.accattoli@inria.fr
2 University of Oxford, Department of Computer Science, Oxford, United Kingdom,

giulio.guerrieri@cs.ox.ac.uk

Abstract. The theory of the call-by-value λ-calculus relies on weak
evaluation and closed terms, that are natural hypotheses in the study of
programming languages. To model proof assistants, however, strong evalu-
ation and open terms are required. Open call-by-value is the intermediate
setting of weak evaluation with open terms, on top of which Grégoire and
Leroy designed the abstract machine of Coq. This paper provides a theory
of abstract machines for open call-by-value. The literature contains ma-
chines that are either simple but inefficient, as they have an exponential
overhead, or efficient but heavy, as they rely on a labelling of environments
and a technical optimization. We introduce a machine that is simple and
efficient: it does not use labels and it implements open call-by-value within
a bilinear overhead. Moreover, we provide a new fine understanding of
how different optimizations impact on the complexity of the overhead.

This work is part of a wider research effort, the COCA HOLA project
https://sites.google.com/site/beniaminoaccattoli/coca-hola.

1 Introduction

The λ-calculus is the computational model behind functional programming
languages and proof assistants. A charming feature is that its definition is based
on just one macro-step computational rule, β-reduction, and does not rest on
any notion of machine or automaton. Compilers and proof assistants however are
concrete tools that have to implement the λ-calculus in some way—a problem
clearly arises. There is a huge gap between the abstract mathematical setting of
the calculus and the technical intricacies of an actual implementation. This is why
the issue is studied via intermediate abstract machines, that are implementation
schemes with micro-step operations and without too many concrete details.

Closed and Strong λ-Calculus. Functional programming languages are based on
a simplified form of λ-calculus, that we like to call closed λ-calculus, with two
important restrictions. First, evaluation is weak, i.e. it does not evaluate function
bodies. Second, terms are closed, that is, they have no free variables. The theory
of the closed λ-calculus is much simpler than the general one.

Proof assistants based on the λ-calculus usually require the power of the full
theory. Evaluation is then strong, i.e. unrestricted, and the distinction between

171

www.manaraa.com

open and closed terms no longer makes sense, because evaluation has to deal
with the issues of open terms even if terms are closed, when it enters function
bodies. We refer to this setting as the strong λ-calculus.

Historically, the study of strong and closed λ-calculi have followed orthogonal
approaches. Theoretical studies rather dealt with the strong λ-calculus, and it is
only since the seminal work of Abramsky and Ong [1] that theoreticians started
to take the closed case seriously. Dually, practical studies mostly ignored strong
evaluation, with the notable exception of Crégut [13] (1990) and some very recent
works [19,6,3]. Strong evaluation is nonetheless essential in the implementation
of proof assistants or higher-order logic programming, typically for type-checking
with dependent types as in the Edinburgh Logical Framework or the Calculus of
Constructions, as well as for unification in simply typed frameworks like λ-prolog.

Open Call-by-Value. In a very recent work [8], we advocated the relevance of the
open λ-calculus, a framework in between the closed and the strong ones, where
evaluation is weak but terms may be open. Its key property is that the strong
case can be described as the iteration of the open one into function bodies. The
same cannot be done with the closed λ-calculus because—as already pointed
out—entering into function bodies requires to deal with (locally) open terms.

The open λ-calculus did not emerge before because most theoretical studies
focus on the call-by-name strong λ-calculus, and in call-by-name the distinction
open/closed does not play an important role. Such a distinction, instead, is delicate
for call-by-value evaluation, where Plotkin’s original operational semantics [22]
is not adequate for open terms. This issue is discussed at length in [8], where
four extensions of Plotkin’s semantics to open terms are compared and shown to
be equivalent. That paper then introduces the expression Open Call-by-Value
(shortened Open CbV) to refer to them as a whole, as well as Closed CbV and
Strong CbV to concisely refer to the closed and strong call-by-value λ-calculus.

The Fireball Calculus. The simplest presentation of Open CbV is the fireball
calculus λfire, obtained from the CbV λ-calculus by generalizing values into fireballs.
Dynamically, β-redexes are allowed to fire only when the argument is a fireball
(fireball is a pun on fire-able). The fireball calculus was introduced without a
name by Paolini and Ronchi Della Rocca [21,23], then rediscovered independently
first by Leroy and Grégoire [20], and then by Accattoli and Sacerdoti Coen [2].
Notably, on closed terms, λfire coincides with Plotkin’s (Closed) CbV λ-calculus.

Coq by Levels. In [20] (2002) Leroy and Grégoire used the fireball calculus to
improve the implementation of the Coq proof assistant. In fact, Coq rests on
Strong CbV, but Leroy and Grégoire design an abstract machine for the fireball
calculus (i.e. Open CbV) and then use it to evaluate Strong CbV by levels: the
machine is first executed at top level (that is, out of all abstractions), and then
re-launched recursively under abstractions. Their study is itself formalized in
Coq, but it lacks an estimation of the efficiency of the machine.

In order to continue our story some basic facts about cost models and abstract
machines have to be recalled (see [4] for a gentle tutorial).

172

www.manaraa.com

Interlude 1: Size Explosion. It is well-known that λ-calculi suffer from a degener-
acy called size explosion: there are families of terms whose size is linear in n, that
evaluate in n β-steps, and whose result has size exponential in n. The problem is
that the number of β-steps, the natural candidate as a time cost model, then
seems not to be a reasonable cost model, because it does not even account for
the time to write down the result of a computation—the macro-step character
of β-reduction seems to forbid to count 1 for each step. This is a problem that
affects all λ-calculi and all evaluation strategies.

Interlude 2: Reasonable Cost Models and Abstract Machines. Despite size explo-
sion, surprisingly, the number of β-steps often is a reasonable cost model—so
one can indeed count 1 for each β-step. There are no paradoxes: λ-calculi can
be simulated in alternative formalisms employing some form of sharing, such as
abstract machines. These settings manage compact representations of terms via
micro-step operations and produce compact representations of the result, avoiding
size explosion. Showing that a certain λ-calculus is reasonable usually is done by
simulating it with a reasonable abstract machine, i.e. a machine implementable
with overhead polynomial in the number of β-steps in the calculus. The design
of a reasonable abstract machine depends very much on the kind of λ-calculus
to be implemented, as different calculi admit different forms of size explosion
and/or require more sophisticated forms of sharing. For strategies in the closed
λ-calculus it is enough to use the ordinary technology for abstract machines, as
first shown by Blelloch and Greiner [12], and then by Sands, Gustavsson, and
Moran [24], and, with other techniques, by combining the results in Dal Lago
and Martini’s [15] and [14]. The case of the strong λ-calculus is subtler, and a
more sophisticated form of sharing is necessary, as first shown by Accattoli and
Dal Lago [7]. The topic of this paper is the study of reasonable machines for the
intermediate case of Open CbV.

Fireballs are Reasonable. In [2] Accattoli and Sacerdoti Coen study Open CbV
from the point of view of cost models. Their work provides 3 contributions:

1. Open Size Explosion: they show that Open CbV is subtler than Closed CbV
by exhibiting a form of size explosions that is not possible in Closed CbV,
making Open CbV closer to Strong CbV rather than to Closed CbV;

2. Fireballs are Reasonable: they show that the number of β-steps in the fireball
calculus is nonetheless a reasonable cost model by exhibiting a reasonable
abstract machine, called GLAMOUr, improving over Leroy and Grégoire’s
machine in [20] (see the conclusions for more on their machine);

3. And Even Efficient : they optimize the GLAMOUr into the Unchaining GLA-
MOUr, whose overhead is bilinear (i.e. linear in the number of β-steps and
the size of the initial term), that is the best possible overhead.

This Paper. Here we present two machines, the Easy GLAMOUr and the Fast
GLAMOUr, that are proved to be correct implementations of Open CbV and to
have a polynomial and bilinear overhead, respectively. Their study refines the
results of [2] along three axes:

173

www.manaraa.com

1. Simpler Machines: both the GLAMOUr and the Unchaining GLAMOUr of
[2] are sophisticated machines resting on a labeling of terms. The unchaining
optimizations of the second machine is also quite heavy. Both the Easy GLA-
MOUr and the Fast GLAMOUr, instead, do not need labels and the Fast
GLAMOUr is bilinear with no need of the unchaining optimization.

2. Simpler Analyses : the correctness and complexity analyses of the (Unchaining)
GLAMOUr are developed in [2] via an informative but complex decomposition
via explicit substitutions, by means of the distillation methodology [5]. Here,
instead, we decode the Easy and Fast GLAMOUr directly to the fireball
calculus, that turns out to be much simpler. Moreover, the complexity analysis
of the Fast GLAMOUr, surprisingly, turns out to be straightforward.

3. Modular Decomposition of the Overhead : we provide a fine analysis of how
different optimizations impact on the complexity of the overhead of abstract
machines for Open CbV. In particular, it turns out that one of the optimiza-
tions considered essential in [2], namely substituting abstractions on-demand,
is not mandatory for reasonable machines—the Easy GLAMOUr does not
implement it and yet it is reasonable. We show, however, that this is true only
as long as one stays inside Open CbV because the optimization is instead
mandatory for Strong CbV (seen by Grégoire and Leroy as Open CbV by
levels). To our knowledge substituting abstractions on-demand is an opti-
mization introduced in [7] and currently no proof assistant implements it.
Said differently, our work shows that the technology currently in use in proof
assistants is, at least theoretically, unreasonable.

Summing up, this paper does not improve the known bound on the overhead
of abstract machines for Open CbV, as the one obtained in [2] is already optimal.
Its contributions instead are a simplification and a finer understanding of the
subtleties of implementing Open CbV: we introduce simpler abstract machines
whose complexity analyses are elementary and carry a new modular view of how
different optimizations impact on the complexity of the overhead.

In particular, while [2] shows that Open CbV is subtler than Closed CbV,
here we show that Open CbV is simpler than Strong CbV, and that defining
Strong CbV as iterated Open CbV, as done by Grégoire and Leroy in [20], may
introduce an explosion of the overhead, if done naively.

A longer version of this paper is available on Arxiv [9]. It contains two
Appendices, one with a glossary of rewriting theory and one with omitted proofs.

2 The Fireball Calculus λfire & Open Size Explosion

In this section we introduce the fireball calculus, the presentation of Open CbV
we work with in this paper, and show the example of size explosion peculiar to
the open setting. Alternative presentations of Open CbV can be found in [8].

The Fireball Calculus. The fireball calculus λfire is defined in Fig. 1. The idea
is that the values of the call-by-value λ-calculus, given by abstractions and

174

www.manaraa.com

Terms t, u, s, r ::= x | λx.t | tu
Fireballs f, f ′, f ′′ ::= λx.t | i

Inert Terms i, i′, i′′ ::= xf1 . . . fn n ≥ 0
Evaluation Contexts E ::= 〈·〉 | tE | Et

Rule at Top Level Contextual closure
(λx.t)(λy.u) 7→βλ t{x�λy.u} E〈t〉 →βλ E〈u〉 if t 7→βλ u

(λx.t)i 7→βi t{x�i} E〈t〉 →βi E〈u〉 if t 7→βi u

Reduction →βf :=→βλ ∪ →βi

Fig. 1. The Fireball Calculus λfire

variables, are generalized to fireballs, by extending variables to more general
inert terms. Actually fireballs and inert terms are defined by mutual induction
(in Fig. 1). For instance, λx.y is a fireball as an abstraction, while x, y(λx.x), xy,
and (z(λx.x))(zz)(λy.(zy)) are fireballs as inert terms.

The main feature of inert terms is that they are open, normal, and that when
plugged in a context they cannot create a redex, hence the name (they are not
so-called neutral terms because they might have β-redexes under abstractions).
In Grégoire and Leroy’s presentation [20], inert terms are called accumulators
and fireballs are simply called values.

Terms are always identified up to α-equivalence and the set of free variables
of a term t is denoted by fv(t). We use t{x�u} for the term obtained by the
capture-avoiding substitution of u for each free occurrence of x in t.

Evaluation is given by call-by-fireball β-reduction →βf : the β-rule can fire,
lighting up the argument, only when it is a fireball (fireball is a catchier version
of fire-able term). We actually distinguish two sub-rules: one that lights up
abstractions, noted →βλ , and one that lights up inert terms, noted →βi (see
Fig. 1). Note that evaluation is weak (i.e. it does not reduce under abstractions).

Properties of the Calculus. A famous key property of Closed CbV (whose evalua-
tion is exactly →βλ) is harmony : given a closed term t, either it diverges or it
evaluates to an abstraction, i.e. t is βλ-normal iff t is an abstraction. The fireball
calculus satisfies an analogous property in the open setting by replacing abstrac-
tions with fireballs (Prop. 1.1). Moreover, the fireball calculus is a conservative
extension of Closed CbV: on closed terms it collapses on Closed CbV (Prop. 1.2).
No other presentation of Open CbV has these properties.

Proposition 1 (Distinctive Properties of λfire). Let t be a term.

1. Open Harmony: t is βf -normal iff t is a fireball.

2. Conservative Open Extension: t→βf u iff t→βλ u whenever t is closed.

The rewriting rules of λfire have also many good operational properties, studied
in [8] and summarized in the following proposition.

Proposition 2 (Operational Properties of λfire, [8]). The reduction →βf

is strongly confluent, and all βf -normalizing derivations d (if any) from a term

175

www.manaraa.com

t have the same length |d|βf , the same number |d|βλ of βλ-steps, and the same
number |d|βi of βi-steps.

Right-to-Left Evaluation. As expected from a calculus, the evaluation rule→βf of
λfire is non-deterministic, because in the case of an application there is no fixed
order in the evaluation of the left and right subterms. Abstract machines however
implement deterministic strategies. We then fix a deterministic strategy (which
fires βf -redexes from right to left and is the one implemented by the machines
of the next sections). By Prop. 2, the choice of the strategy does not impact on
existence of a result, nor on the result itself or on the number of steps to reach it.
It does impact however on the design of the machine, which selects βf -redexes
from right to left.

The right-to-left evaluation strategy →rβf is defined by closing the root rules
7→βλ and 7→βi in Fig. 1 by right contexts, a special kind of evaluation contexts
defined by R ::= 〈·〉 | tR | Rf . The next lemma ensures our definition is correct.

Lemma 3 (Properties of →rβf). Let t be a term.

1. Completeness: t has →βf -redex iff t has a →rβf -redex.

2. Determinism: t has at most one →rβf -redex.

Example 4. Let t := (λz.z(yz))λx.x. Then, t →rβf (λx.x)(y λx.x) →rβf y λx.x,
where the final term y λx.x is a fireball (and βf -normal).

Open Size Explosion. Fireballs are delicate, they easily explode. The simplest
instance of open size explosion (not existing in Closed CbV) is a variation over
the famous looping term Ω := (λx.xx)(λx.xx)→βλ Ω →βλ In Ω there is an
infinite sequence of duplications. In the size exploding family there is a sequence
of n nested duplications. We define two families, the family {tn}n∈N of size
exploding terms and the family {in}n∈N of results of evaluating {tn}n∈N:

t0 := y tn+1 := (λx.xx)tn i0 := y in+1 := inin

We use |t| for the size of a term, i.e. the number of symbols to write it.

Proposition 5 (Open Size Explosion, [2]). Let n ∈ N. Then tn →n
βi
in,

moreover |tn| = O(n), |in| = Ω(2n), and in is an inert term.

Circumventing Open Size Explosion. Abstract machines implementing the substi-
tution of inert terms, such as the one described by Grégoire and Leroy in [20] are
unreasonable because for the term tn of the size exploding family they compute
the full result in. The machines of the next sections are reasonable because they
avoid the substitution of inert terms, that is justified by the following lemma.

Lemma 6 (Inert Substitutions Can Be Avoided). Let t, u be terms and
i be an inert term. Then, t→βf u iff t{x�i} →βf u{x�i}.

Lemma 6 states that the substitution of an inert term cannot create redexes,
which is why it can be avoided. For general terms, only direction ⇒ holds,
because substitution can create redexes, as in (xy){x�λz.z} = (λz.z)y. Direction
⇐, instead, is distinctive of inert terms, of which it justifies the name.

176

www.manaraa.com

3 Preliminaries on Abstract Machines, Implementations,
and Complexity Analyses

– An abstract machine M is given by states, noted s, and transitions between
them, noted M;

– A state is given by the code under evaluation plus some data-structures;

– The code under evaluation, as well as the other pieces of code scattered in
the data-structures, are λ-terms not considered modulo α-equivalence;

– Codes are over-lined, to stress the different treatment of α-equivalence;

– A code t is well-named if x may occur only in u (if at all) for every sub-code
λx.u of t;

– A state s is initial if its code is well-named and its data-structures are empty;

– Therefore, there is a bijection ·◦ (up to α) between terms and initial states,
called compilation, sending a term t to the initial state t◦ on a well-named
code α-equivalent to t;

– An execution is a (potentially empty) sequence of transitions t◦0 ∗M s from
an initial state obtained by compiling an (initial) term t0;

– A state s is reachable if it can be obtained as the end state of an execution;

– A state s is final if it is reachable and no transitions apply to s;

– A machine comes with a map · from states to terms, called decoding, that on
initial states is the inverse (up to α) of compilation, i.e. t◦ = t for any term t;

– A machine M has a set of β-transitions, whose union is noted β , that are
meant to be mapped to β-redexes by the decoding, while the remaining
overhead transitions, denoted by o, are mapped to equalities;

– We use |ρ| for the length of an execution ρ, and |ρ|β for the number of
β-transitions in ρ.

Implementations. For every machine one has to prove that it correctly implements
the strategy in the λ-calculus it was conceived for. Our notion, tuned towards
complexity analyses, requires a perfect match between the number of β-steps of
the strategy and the number of β-transitions of the machine execution.

Definition 7 (Machine Implementation). A machine M implements a strat-
egy → on λ-terms via a decoding · when given a λ-term t the following holds:

1. Executions to Derivations: for any M-execution ρ : t◦ ∗M s there exists a
→-derivation d : t→∗ s.

2. Derivations to Executions: for every →-derivation d : t→∗ u there exists a
M-execution ρ : t◦ ∗M s such that s = u.

3. β-Matching: in both previous points the number |ρ|β of β-transitions in ρ is
exactly the length |d| of the derivation d, i.e. |d| = |ρ|β.

Sufficient Condition for Implementations. The proofs of implementation theorems
tend to follow always the same structure, based on a few abstract properties
collected here into the notion of implementation system.

177

www.manaraa.com

Definition 8 (Implementation System). A machine M, a strategy →, and a
decoding · form an implementation system if the following conditions hold:

1. β-Projection: s β s
′ implies s→ s′;

2. Overhead Transparency: s o s
′ implies s = s′;

3. Overhead Transitions Terminate: o terminates;

4. Determinism: both M and → are deterministic;

5. Progress: M final states decode to →-normal terms.

Theorem 9 (Sufficient Condition for Implementations). Let (M,→, ·) be
an implementation system. Then, M implements → via ·.

The proof of Thm. 9 is a clean and abstract generalization of the concrete
reasoning already at work in [5,2,3,4].

Parameters for Complexity Analyses. By the derivations-to-executions part of
the implementation (Point 2 in Def. 7), given a derivation d : t0 →n u there is a
shortest execution ρ : t◦0 ∗M s such that s = u. Determining the complexity of a
machine M amounts to bound the complexity of a concrete implementation of ρ
on a RAM model, as a function of two fundamental parameters:

1. Input : the size |t0| of the initial term t0 of the derivation d;

2. β-Steps/Transitions: the length n = |d| of the derivation d, that coincides
with the number |ρ|β of β-transitions in ρ by the β-matching requirement for
implementations (Point 3 in Def. 7).

A machine is reasonable if its complexity is polynomial in |t0| and |ρ|β , and it is
efficient if it is linear in both parameters. So, a strategy is reasonable (resp. effi-
cient) if there is a reasonable (resp. efficient) machine implementing it. In Sect. 4-5
we study a reasonable machine implementing right-to-left evaluation→rβf in λfire,
thus showing that it is a reasonable strategy. In Sect. 6 we optimize the machine to
make it efficient. By Prop. 2, this implies that every strategy in λfire is efficient.

Recipe for Complexity Analyses. For complexity analyses on a machine M, overhead
transitions o are further separated into two classes:

1. Substitution Transitions s: they are in charge of the substitution process;

2. Commutative Transitions c: they are in charge of searching for the next β
or substitution redex to reduce.

Then, the estimation of the complexity of a machine is done in three steps:

1. Number of Transitions : bounding the length of the execution ρ, by bounding
the number of overhead transitions. This part splits into two subparts:

i. Substitution vs β: bounding the number |ρ|s of substitution transitions in
ρ using the number of β-transitions;

ii. Commutative vs Substitution: bounding the number |ρ|c of substitution
transitions in ρ using the size of the input and |ρ|s; the latter—by the
previous point—induces a bound with respect to β-transitions.

2. Cost of Single Transitions: bounding the cost of concretely implementing a
single transition of M. Here it is usually necessary to go beyond the abstract

178

www.manaraa.com

φ ::= λx.u@ε | x@π E ::= ε | [x�φ] :E
π ::= ε | φ : π s ::= (D, t, π, E)
D ::= ε | D : t♦π

ε := 〈·〉 t

→

ε := t t

→

[x�φ]:E := t{x�φ}→ E
φ : π := 〈〈·〉φ〉π Cs := D〈π〉→ E
t@π := 〈t〉π s := D〈〈t〉π〉→ E = Cs〈t

→

E〉
D : t♦π := D〈〈t〈·〉〉π〉 where s = (D, t, π,E)

Dump Code Stack Global Env Dump Code Stack Global Env

D tu π E c1 D : t♦π u ε E
D : t♦π λx.u ε E c2 D t λx.u@ε : π E
D : t♦π x π′ E c3 D t x@π′ : π E

if E(x) = ⊥ or E(x) = y@π′′

D λx.t φ :π E β D t π [x�φ]E
D x π E1[x�λy.u@ε]E2 s D (λy.u)α π E1[x�λy.u@ε]E2

where (λy.u)α is any well-named code α-equivalent to λy.u such that its
bound names are fresh with respect to those in D, π and E1[x�λy.u@ε]E2.

Fig. 2. Easy GLAMOUr machine: data-structures (stacks π, dumps D, global env. E,
states s), unfolding t↓E , decoding · (stacks are decoded to contexts in postfix notation
for plugging, i.e. we write 〈t〉π rather than π〈t〉), and transitions.

level, making some (high-level) assumption on how codes and data-structure
are concretely represented. Commutative transitions are designed on purpose
to have constant cost. Each substitution transition has a cost linear in the
size of the initial term thanks to an invariant (to be proved) ensuring that
only subterms of the initial term are duplicated and substituted along an
execution. Each β-transition has a cost either constant or linear in the input.

3. Complexity of the Overhead : obtaining the total bound by composing the first
two points, that is, by taking the number of each kind of transition times the
cost of implementing it, and summing over all kinds of transitions.

(Linear) Logical Reading. Let us mention that our partitioning of transitions into
β, substitution, and commutative ones admits a proof-theoretical view, as machine
transitions can be seen as cut-elimination steps [11,5]. Commutative transitions
correspond to commutative cases, while β and substitution are principal cases.
Moreover, in linear logic the β transition corresponds to the multiplicative case
while the substitution transition to the exponential one. See [5] for more details.

4 Easy GLAMOUr

In this section we introduce the Easy GLAMOUr, a simplified version of the
GLAMOUr machine from [2]: unlike the latter, the Easy GLAMOUr does not
need any labeling of codes to provide a reasonable implementation.

With respect to the literature on abstract machines for CbV, our machines
are unusual in two respects. First, and more importantly, they use a single global
environment instead of closures and local environments. Global environments are
used in a minority of works [17,24,16,5,2,6,3] and induce simpler, more abstract
machines where α-equivalence is pushed to the meta-level (in the operation t

α
in

179

www.manaraa.com

 s in Fig. 2-3). This on-the-fly α-renaming is harmless with respect to complexity
analyses, see also discussions in [5,4]. Second, argument stacks contain pairs of a
code and a stack, to implement some of the machine transitions in constant time.

Background. GLAMOUr stands for Useful (i.e. optimized to be reasonable) Open
(reducing open terms) Global (using a single global environment) LAM, and LAM
stands for Leroy Abstract Machine, an ordinary machine implementing right-
to-left Closed CbV, defined in [5]. In [2] the study of the GLAMOUr was done
according to the distillation approach of [5], i.e. by decoding the machine towards
a λ-calculus with explicit substitutions. Here we do not follow the distillation
approach, we decode directly to λfire, which is simpler.

Machine Components. The Easy GLAMOUr is defined in Fig. 2. A machine
state s is a quadruple (D, t, π,E) given by:

– Code t: a term not considered up to α-equivalence, which is why it is over-lined;

– Argument Stack π: it contains the arguments of the current code. Note that
stacks items φ are pairs x@π and λx.u@ε. These pairs allow to implement
some of the transitions in constant time. The pair x@π codes the term 〈x〉π
(defined in Fig. 2—the decoding is explained below) that would be obtained
by putting x in the context obtained by decoding the argument stack π. The
pair λx.u@ε is used to inject abstractions into pairs, so that items φ can be
uniformly seen as pairs t@π of a code t and a stack π.

– Dump D: a second stack, that together with the argument stack π is used to
walk through the code and search for the next redex to reduce. The dump is
extended with an entry t♦π every time evaluation enters in the right subterm
u of an application tu. The entry saves the left part t of the application and
the current stack π, to restore them when the evaluation of the right subterm
u is over. The dump D and the stack π decode to an evaluation context.

– Global Environment E: a list of explicit (i.e. delayed) substitutions storing
substitutions generated by the redexes encountered so far. It is used to imple-
ment micro-step evaluation (i.e. the substitution for one variable occurrence
at a time). We write E(x) = ⊥ if in E there are no entries of the form [x�φ].
Often [x�φ]E stands for [x�φ] :E.

Transitions. In the Easy GLAMOUr there is one β-transition whereas overhead
transitions are divided up into substitution and commutative transitions.

– β-Transition β : it morally fires a →rβf -redex, the one corresponding to
(λx.t)φ, except that it puts a new delayed substitution [x�φ] in the environ-
ment instead of doing the meta-level substitution t{x�φ} of the argument in
the body of the abstraction;

– Substitution Transition s: it substitutes the variable occurrence under evalu-
ation with a (properly α-renamed copy of a) code from the environment. It is a
micro-step variant of meta-level substitution. It is invisible on λfire because the
decoding produces the term obtained by meta-level substitution, and so the
micro work done by s cannot be observed at the coarser granularity of λfire.

180

www.manaraa.com

– Commutative Transitions c: they locate and expose the next redex according
to the right-to-left strategy, by rearranging the data-structures. They are
invisible on the calculus. The commutative rule c1 forces evaluation to be
right-to-left on applications: the machine processes first the right subterm u,
saving the left sub-term t on the dump together with its current stack π. The
role of c2 and c3 is to backtrack to the entry on top of the dump. When
the right subterm, i.e. the pair t@π of current code and stack, is finally in
normal form, it is pushed on the stack and the machine backtracks.

O for Open: note condition E(x) = ⊥ in c3—that is how the Easy GLAMOUr
handles open terms. U for Useful : note condition E(x) = y@π′′ in c3—inert
terms are never substituted, according to Lemma 6. Removing the useful side-
condition one recovers Grégoire and Leroy’s machine [20]. Note that terms
substituted by s are always abstractions and never variables—this fact will
play a role in Sect. 6. Garbage Collection: it is here simply ignored, or, more
precisely, it is encapsulated at the meta-level, in the decoding function. It is
well-known that this is harmless for the study of time complexity.

Compiling, Decoding and Invariants. A term t is compiled to the machine initial
state t◦ = (ε, t, ε, ε), where t is a well-named term α-equivalent to t. Conversely,
every machine state s decodes to a term s (see the top right part of Fig. 2),
having the shape Cs〈t

→

E〉, where t

→

E is a λ-term, obtained by applying to the
code the meta-level substitution

→

E induced by the global environment E, and
Cs is an evaluation context, obtained by decoding the stack π and the dump
D and then applying

→
E . Note that, to improve readability, stacks are decoded

to contexts in postfix notation for plugging, i.e. we write 〈t〉π rather than π〈t〉
because π is a context that puts arguments in front of t.

Example 10. To have a glimpse of how the Easy GLAMOUr works, let us show
how it implements the derivation t := (λz.z(yz))λx.x→2

rβf
y λx.x of Ex. 4:

Dump Code Stack Global Environment
ε (λz.z(yz))λx.x ε ε c1

λz.z(yz)♦ε λx.x ε ε c2

ε λz.z(yz) λx.x@ε ε β

ε z(yz) ε [z�λx.x@ε] c1

z♦ε yz ε [z�λx.x@ε] c1

z♦ε : y♦ε z ε [z�λx.x@ε] s

z♦ε : y♦ε λx′.x′ ε [z�λx.x@ε] c2

z♦ε y λx′.x′@ε [z�λx.x@ε] c3

ε z y@(λx′.x′@ε) [z�λx.x@ε] s

ε λx′′.x′′ y@(λx′.x′@ε) [z�λx.x@ε] β

ε x′′ ε [x′′�y@(λx′.x′@ε)] : [z�λx.x@ε]

Note that the initial state is the compilation of the term t, the final state decodes
to the term y λx.x, and the two β-transitions in the execution correspond to the
two →rβf -steps in the derivation considered in Ex. 4.

The study of the Easy GLAMOUr machine relies on the following invariants.

181

www.manaraa.com

Lemma 11 (Easy GLAMOUr Qualitative Invariants). Let s = (D, t, π,E)
be a reachable state. Then:

1. Name:

1. Explicit Substitution: if E = E′[x�u]E′′ then x is fresh wrt u and E′′;
2. Abstraction: if λx.u is a subterm of D, t, π, or E, x may occur only in u;

3. Fireball Item: φ and φ

→

E are inert terms if φ = x@π′, and abstractions
otherwise, for every item φ in π, in E, and in every stack in D;

4. Contextual Decoding: Cs = D〈π〉→ E is a right context.

Implementation Theorem. The invariants are used to prove the implementation
theorem by proving that the hypotheses of Thm. 9 hold, that is, that the Easy
GLAMOUr, →rβf and · form an implementation system.

Theorem 12 (Easy GLAMOUr Implementation). The Easy GLAMOUr
implements right-to-left evaluation →rβf in λfire (via the decoding ·).

5 Complexity Analysis of the Easy GLAMOUr

The analysis of the Easy GLAMOUr is done according to the recipe given at the
end of Sect. 3. The result (see Thm. 17 below) is that the Easy GLAMOUr is
linear in the number |ρ|β of β-steps/transitions and quadratic in the size |t0| of

the initial term t0, i.e. its overhead has complexity O((1 + |ρ|β) · |t0|2).

The analysis relies on a quantitative invariant, the crucial subterm invariant,
ensuring that s duplicates only subterms of the initial term, so that the cost of
duplications is connected to one of the two parameters for complexity analyses.

Lemma 13 (Subterm Invariant). Let ρ : t◦0 ∗ (D, t, π,E) be an Easy GLA-
MOUr execution. Every subterm λx.u of D, t, π, or E is a subterm of t0.

Intuition About Complexity Bounds. The number |ρ|s of substitution transitions
 s depends on both parameters for complexity analyses, the number |ρ|β of
β-transitions and the size |t0| of the initial term. Dependency on |ρ|β is standard,
and appears in every machine [12,24,5,2,6,3]—sometimes it is quadratic, here
it is linear, in Sect. 6 we come back to this point. Dependency on |t0| is also
always present, but usually only for the cost of a single s transition, since only
subterms of t0 are duplicated, as ensured by the subterm invariant. For the Easy
GLAMOUr, instead, also the number of s transitions depends—linearly—on
|t0|: this is a side-effect of dealing with open terms. Since both the cost and the
number of s transitions depend on |t0|, the dependency is quadratic.

The following family of terms shows the dependency on |t0| in isolation (i.e.,
with no dependency on |ρ|β). Let rn := λx.(. . . ((y x)x) . . .)x︸ ︷︷ ︸

n

and consider:

un := rnrn = (λx.(. . . ((y

n︷ ︸︸ ︷
x)x) . . .)x)rn →βλ (. . . ((y

n︷ ︸︸ ︷
rn)rn) . . .)rn . (1)

182

www.manaraa.com

Forgetting about commutative transitions, the Easy GLAMOUr would evaluate un
with one β-transition β and n substitution transitions s, each one duplicating
rn, whose size (as well as the size of the initial term un) is linear in n.

The number |ρ|c of commutative transitions c, roughly, is linear in the
amount of code involved in the evaluation process. This amount is given by
the initial code plus the code produced by duplications, that is bounded by the
number of substitution transitions times the size of the initial term. The number
of commutative transitions is then O((1+ |ρ|β) · |t0|2). Since each one has constant
cost, this is also a bound to their cost.

Number of Transitions 1: Substitution vs β Transitions. The number |ρ|s of
substitution transitions is proven (see Cor. 15 below) to be bilinear, i.e. linear in
|t0| and |ρ|β , by means of a measure.

The free size | · |free of a code counts the number of free variable occurrences
that are not under abstractions. It is defined and extended to states as follows:

|x|free := 1 |ε|free := 0

|λy.u|free := 0 |φ : π|free := |φ|free + |π|free

|tu|free := |t|free + |u|free |D : (t, π)|free := |t|free + |π|free + |D|free

|(D, t, π,E)|free := |D|free + |t|free + |π|free.

Lemma 14 (Free Occurrences Invariant). Let ρ : t◦0 ∗ s be an Easy GLA-
MOUr execution. Then, |s|free ≤ |t0|free + |t0| · |ρ|β − |ρ|s.

Corollary 15 (Bilinear Number of Substitution Transitions). Let ρ :
t◦0 ∗ s be an Easy GLAMOUr execution. Then, |ρ|s ≤ (1 + |ρ|β) · |t0|.

Number of Transitions 2: Commutative vs Substitution Transitions. The bound
on the number |ρ|c of commutative transitions is found by means of a (different)
measure on states. The bound is linear in |t0| and in |ρ|s, which means—by
applying the result just obtained in Cor. 15—quadratic in |t0| and linear in |ρ|β .

The commutative size of a state is defined as |(D, t, π,E)|c := |t|+Σu♦π′∈D|u|,
where |t| is the usual size of codes.

Lemma 16 (Number of Commutative Transitions). Let ρ : t◦0 ∗ s be
an Easy GLAMOUr execution. Then |ρ|c ≤ |ρ|c + |s|c ≤ (1 + |ρ|s) · |t0| ∈
O((1 + |ρ|β) · |t0|2).

Cost of Single Transitions. We need to make some hypotheses on how the Easy
GLAMOUr is going to be itself implemented on RAM:

1. Variable (Occurrences) and Environment Entries: a variable is a memory
location, a variable occurrence is a reference to it, and an environment entry
[x�φ] is the fact that the location associated to x contains φ.

2. Random Access to Global Environments : the environment E can be accessed in
O(1) (in s) by just following the reference given by the variable occurrence
under evaluation, with no need to access E sequentially, thus ignoring its list
structure (used only to ease the definition of the decoding).

183

www.manaraa.com

Dump Code Stack Global Env Dump Code Stack Global Env

D tu π E c1 D : t♦π u ε E
D : t♦π λx.u ε E c2 D t λx.u@ε : π E
D : t♦π x π′ E c3 D t x@π′ : π E

if E(x) = ⊥ or E(x) = y@π′′ or (E(x) = λy.u@ε and π′ = ε)
D λx.t y@ε :π E β1 D t{x�y} π E
D λx.t φ : π E β2 D t π [x�φ]E

if φ 6= y@ε
D x φ : π E1[x�λy.u@ε]E2 s D (λy.u)α φ : π E1[x�λy.u@ε]E2

Fig. 3. Fast GLAMOUr (data-structures, decoding, and (λy.u)α defined as in Fig. 2).

With these hypotheses it is clear that β and overhead transitions can be
implemented in O(1). The substitution transition s needs to copy a code from
the environment (the renaming t

α
) and can be implemented in O(|t0|), as the

subterm to copy is a subterm of t0 by the subterm invariant (Lemma 13) and
the environment can be accessed in O(1).

Summing Up. By putting together the bounds on the number of transitions with
the cost of single transitions we obtain the overhead of the machine.

Theorem 17 (Easy GLAMOUr Overhead Bound). Let ρ : t◦0 ∗ s be an
Easy GLAMOUr execution. Then ρ is implementable on RAM in O((1 + |ρ|β) ·
|t0|2), i.e. linear in the number of β-transitions (aka the length of the derivation
d : t0 →∗rβf s implemented by ρ) and quadratic in the size of the initial term t0.

6 Fast GLAMOUr

In this section we optimize the Easy GLAMOUr, obtaining a machine, the Fast
GLAMOUr, whose dependency from the size of the initial term is linear, instead
of quadratic, providing a bilinear—thus optimal—overhead (see Thm. 21 below
and compare it with Thm. 17 on the Easy GLAMOUr). We invite the reader to go
back to equation (1) at page 12, where the quadratic dependency was explained.
Note that in that example the substitutions of rn do not create βf -redexes, and
so they are useless. The Fast GLAMOUr avoids these useless substitutions and
it implements the example with no substitutions at all.

Optimization: Abstractions On-Demand. The difference between the Easy GLA-
MOUr and the machines in [2] is that, whenever the former encounters a variable
occurrence x bound to an abstraction λy.t in the environment, it replaces x with
λy.t, while the latter are more parsimonious. They implement an optimization
that we call substituting abstractions on-demand : x is replaced by λy.t only if
this is useful to obtain a β-redex, that is, only if the argument stack is non-empty.
The Fast GLAMOUr, defined in Fig. 3, upgrades the Easy GLAMOUr with
substitutions of abstractions on-demand—note the new side-condition for c3

and the non-empty stack in s.

184

www.manaraa.com

Abstractions On-Demand and the Substitution of Variables. The new optimization
however has a consequence. To explain it, let us recall the role of another
optimization, no substitution of variables. In the Easy GLAMOUr, abstractions
are at depth 1 in the environment: there cannot be chains of renamings, i.e. of
substitutions of variables for variable, ending in abstractions (so, there cannot be
chains like [x�y@ε][y�z@ε][z�λz′.t@ε]). This property implies that the overhead
is linear in |ρ|β and it is induced by the fact that variables cannot be substituted.
If variables can be substituted then the overhead becomes quadratic in |ρ|β—this
is what happens in the GLAMOUr machine in [2]. The relationship between
substituting variables and a linear/quadratic overhead is studied in-depth in [10].

Now, because the Fast GLAMOUr substitutes abstractions on-demand, vari-
able occurrences that are not applied are not substituted by abstractions. The
question becomes what to do when the code is an abstraction λx.t and the top of
the stack argument φ is a simple variable occurrence φ = y@ε (potentially bound
to an abstraction in the environment E) because if one admits that [x�y@ε] is
added to E then the depth of abstractions in the environment may be arbitrary
and so the dependency on |ρ|β may be quadratic, as in the GLAMOUr. There are
two possible solutions to this issue. The complex one, given by the Unchaining
GLAMOUr in [2], is to add labels and a further unchaining optimization. The
simple one is to split the β-transition in two, handling this situation with a new
rule that renames x as y in the code t without touching the environment—this
exactly what the Fast GLAMOUr does with β1

and β2
. The consequence is

that abstractions stay at depth 1 in E, and so the overhead is indeed bilinear.
The simple solution is taken from Sands, Gustavsson, and Moran’s [24], where

they use it on a call-by-name machine. Actually, it repeatedly appears in the
literature on abstract machines often with reference to space consumption and
space leaks, for instance in Wand’s [26], Friedman et al.’s [18], and Sestoft’s [25].

Fast GLAMOUr. The machine is in Fig. 3. Its data-structures, compiling and
decoding are exactly as for the Easy GLAMOUr.

Example 18. Let us now show how the derivation t := (λz.z(yz))λx.x →2
rβf

y λx.x of Ex. 4 is implemented by the Fast GLAMOUr. The execution is similar
to that of the Easy GLAMOUr in Ex. 10, since they implement the same derivation
and hence have the same initial state. In particular, the first five transitions in
the Fast GLAMOUr (omitted here) are the same as in the Easy GLAMOUr (see
Ex. 10 and replace β with β2). Then, the Fast GLAMOUr executes:

Dump Code Stack Global Environment
z♦ε : y♦ε z ε [z�λx.x@ε] c3

z♦ε y z@ε [z�λx.x@ε] c3

ε z y@(z@ε) [z�λx.x@ε] s

ε λx′′.x′′ y@(z@ε) [z�λx.x@ε] β2

ε x′′ ε [x′′�y@(z@ε)] : [z�λx.x@ε]

The Fast GLAMOUr executes only one substitution transition (the Easy GLA-
MOUr takes two) since the replacement of z with λx.x from the environment is on-
demand (i.e. useful to obtain a β-redex) only for the first occurrence of z in z(yz).

185

www.manaraa.com

The Fast GLAMOUr satisfies the same invariants (the qualitative ones—the
fireball item is slightly different—as well as the subterm one, see [9]) and also
forms an implementation system with respect to →rβf and ·. Therefore,

Theorem 19 (Fast GLAMOUr Implementation). The Fast GLAMOUr
implements right-to-left evaluation →rβf in λfire (via the decoding ·).

Complexity Analysis. What changes is the complexity analysis, that, surprisingly,
is simpler. First, we focus on the number of overhead transitions. The substitution
vs β transitions part is simply trivial. Note that a substitution transition s

is always immediately followed by a β-transition, because substitutions are
done only on-demand—therefore, |ρ|s ≤ |ρ|β + 1. It is easy to remove the +1:
executions must have a β2 transition before any substitution one, otherwise
the environment is empty and no substitutions are possible—thus |ρ|s ≤ |ρ|β .

For the commutative vs substitution transitions the exact same measure and
the same reasoning of the Easy GLAMOUr provide the same bound, namely
|ρ|c ≤ (1 + |ρ|s) · |t0|. What improves is the dependency of the commutatives from
β-transitions (obtained by substituting the bound for substitution transitions),
that is now linear because so is that of substitutions—so, |ρ|c ≤ (1 + |ρ|β) · |t0|.
Lemma 20 (Number of Overhead Transitions). Let ρ : t◦0 ∗ s be a Fast
GLAMOUr execution. Then,

1. Substitution vs β Transitions: |ρ|s ≤ |ρ|β.

2. Commutative vs Substitution Transitions: |ρ|c ≤ (1+|ρ|s)·|t0| ≤ (1+|ρ|β)·|t0|.

Cost of Single Transitions and Global Overhead. For the cost of single transitions,
note that c and β2

have (evidently) cost O(1) while s and β1
have cost

O(|t0|) by the subterm invariant. Then we can conclude with

Theorem 21 (Fast GLAMOUr Bilinear Overhead). Let ρ : t◦0 ∗ s be a
Fast GLAMOUr execution. Then ρ is implementable on RAM in O((1 + |ρ|β) ·
|t0|), i.e. linear in the number of β-transitions (aka the length of the derivation
d : t0 →∗rβf s implemented by ρ) and the size of the initial term.

7 Conclusions

Modular Overhead. The overhead of implementing Open CbV is measured with
respect to the size |t0| of the initial term and the number n of β-steps. We showed
that its complexity depends crucially on three choices about substitution.

The first is whether to substitute inert terms that are not variables. If they
are substituted, as in Grégoire and Leroy’s machine [20], then the overhead is
exponential in |t0| because of open size explosion (Prop. 5) and the implementation
is then unreasonable. If they are not substituted, as in the machines studied here
and in [2], then the overhead is polynomial.

The other two parameters are whether to substitute variables, and whether
abstractions are substituted whenever or only on-demand, and they give rise to
the following table of machines and reasonable overheads:

186

www.manaraa.com

Sub of Abs Whenever Sub of Abs On-Demand

Sub of Variables Slow GLAMOUr GLAMOUr
O((1 + n2) · |t0|2) O((1 + n2) · |t0|)

No Sub of Variables Easy GLAMOUr Fast / Unchaining GLAMOUr
O((1 + n) · |t0|2) O((1 + n) · |t0|)

The Slow GLAMOUr has been omitted for lack of space, because it is slow and
involved, as it requires the labeling mechanism of the (Unchaining) GLAMOUr
developed in [2]. It is somewhat surprising that the Fast GLAMOUr presented
here has the best overhead and it is also the easiest to analyze.

Abstractions On-Demand: Open CbV is simpler than Strong CbV. We explained
that Grégoire and Leroy’s machine for Coq as described in [20] is unreasonable.
Its actual implementation, on the contrary, does not substitute non-variable inert
terms, so it is reasonable for Open CbV. None of the versions, however, substitutes
abstractions on-demand (nor, to our knowledge, does any other implementation),
despite the fact that it is a necessary optimization in order to have a reasonable
implementation of Strong CbV, as we now show. Consider the following size
exploding family (obtained by applying sn to the identity I := λx.x), from [4]:

s1 := λx.λy.(yxx) sn+1 := λx.(sn(λy.(yxx))) r0 := I rn+1 := λy.(yrnrn)

Proposition 22 (Abstraction Size Explosion). Let n>0. Then snI →n
βλ
rn.

Moreover, |snI| = O(n), |rn| = Ω(2n), snI is closed, and rn is normal.

The evaluation of snI produces 2n non-applied copies of I (in rn), so a strong
evaluator not substituting abstractions on-demand must have an exponential
overhead. Note that evaluation is weak but the 2n copies of I are substituted under
abstraction: this is why machines for Closed and Open CbV can be reasonable
without substituting abstractions on-demand.

The Danger of Iterating Open CbV Naively. The size exploding example in
Prop. 22 also shows that iterating reasonable machines for Open CbV is subtle,
as it may induce unreasonable machines for Strong CbV, if done naively. Evalu-
ating Strong CbV by iterating the Easy GLAMOUr (that does not substitute
abstractions on-demand), indeed, induces an exponential overhead, while iterating
the Fast GLAMOUr provides an efficient implementation.

Acknowledgements. This work has been partially funded by the ANR JCJC grant
COCA HOLA (ANR-16-CE40-004-01).

References

1. Abramsky, S., Ong, C.L.: Full Abstraction in the Lazy Lambda Calculus. Inf.
Comput. 105(2), 159–267 (1993)

2. Accattoli, B., Sacerdoti Coen, C.: On the Relative Usefulness of Fireballs. In: LICS
2015. pp. 141–155 (2015)

187

www.manaraa.com

3. Accattoli, B.: The Useful MAM, a Reasonable Implementation of the Strong λ-
Calculus. In: WoLLIC 2016. pp. 1–21 (2016)

4. Accattoli, B.: The Complexity of Abstract Machines. In: WPTE 2016 (invited
paper). pp. 1–15 (2017)

5. Accattoli, B., Barenbaum, P., Mazza, D.: Distilling abstract machines. In: ICFP
2014. pp. 363–376 (2014)

6. Accattoli, B., Barenbaum, P., Mazza, D.: A Strong Distillery. In: APLAS 2015. pp.
231–250 (2015)

7. Accattoli, B., Dal Lago, U.: Beta Reduction is Invariant, Indeed. In: CSL-LICS
2014. pp. 8:1–8:10 (2014)

8. Accattoli, B., Guerrieri, G.: Open Call-by-Value. In: APLAS 2016. pp. 206–226
(2016)

9. Accattoli, B., Guerrieri, G.: Implementing Open Call-by-Value (Extended Version).
CoRR abs/1701.08186 (2017), https://arxiv.org/abs/1701.08186

10. Accattoli, B., Sacerdoti Coen, C.: On the Value of Variables. In: WoLLIC 2014. pp.
36–50 (2014)

11. Ariola, Z.M., Bohannon, A., Sabry, A.: Sequent calculi and abstract machines. ACM
Trans. Program. Lang. Syst. 31(4) (2009)

12. Blelloch, G.E., Greiner, J.: A Provable Time and Space Efficient Implementation
of NESL. In: ICFP ’96. pp. 213–225 (1996)

13. Crégut, P.: An Abstract Machine for Lambda-Terms Normalization. In: LISP and
Functional Programming. pp. 333–340 (1990)

14. Dal Lago, U., Martini, S.: Derivational complexity is an invariant cost model. In:
FOPARA 2009. pp. 100–113 (2009)

15. Dal Lago, U., Martini, S.: On constructor rewrite systems and the lambda-calculus.
In: ICALP 2009. pp. 163–174 (2009)

16. Danvy, O., Zerny, I.: A synthetic operational account of call-by-need evaluation. In:
PPDP. pp. 97–108 (2013)

17. Fernández, M., Siafakas, N.: New Developments in Environment Machines. Electr.
Notes Theor. Comput. Sci. 237, 57–73 (2009)

18. Friedman, D.P., Ghuloum, A., Siek, J.G., Winebarger, O.L.: Improving the lazy
Krivine machine. Higher-Order and Symbolic Computation 20(3), 271–293 (2007)

19. Garćıa-Pérez, Á., Nogueira, P., Moreno-Navarro, J.J.: Deriving the full-reducing
Krivine machine from the small-step operational semantics of normal order. In:
PPDP. pp. 85–96 (2013)

20. Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: ICFP
’02. pp. 235–246 (2002)

21. Paolini, L., Ronchi Della Rocca, S.: Call-by-value Solvability. ITA 33(6), 507–534
(1999)

22. Plotkin, G.D.: Call-by-Name, Call-by-Value and the lambda-Calculus. Theor. Com-
put. Sci. 1(2), 125–159 (1975)

23. Ronchi Della Rocca, S., Paolini, L.: The Parametric λ-Calculus – A Metamodel for
Computation. Springer (2004)

24. Sands, D., Gustavsson, J., Moran, A.: Lambda Calculi and Linear Speedups. In: The
Essence of Computation, Complexity, Analysis, Transformation. Essays Dedicated
to Neil D. Jones. pp. 60–84 (2002)

25. Sestoft, P.: Deriving a Lazy Abstract Machine. J. Funct. Program. 7(3), 231–264
(1997)

26. Wand, M.: On the correctness of the Krivine machine. Higher-Order and Symbolic
Computation 20(3), 231–235 (2007)

188

www.manaraa.com

Gray-Box Conformance Testing for Symbolic
Reactive State Machines

Masoumeh Taromirad and Mohammad Reza Mousavi

Centre for Research on Embedded Systems (CERES)
Halmstad University, Sweden

[m.taromirad,m.r.mousavi]@hh.se

Abstract. Model-based testing (MBT) is typically a black-box testing
technique. Therefore, generated test suites may leave some untested gaps
in a given implementation under test (IUT). We propose an approach to
use the structural and behavioural information exploited from the im-
plementation domain to generate effective and efficient test suites. Our
approach considers both specification models and implementation mod-
els, and generates an enriched test model which is used to automatically
generate test suites. We show that the proposed approach is sound and
exhaustive and cover both the specification and the implementation. We
examine the applicability and the effectiveness of our approach by ap-
plying it to a well-known example from the railway domain.

1 Introduction

Model-based testing (MBT) has received significant attention in testing complex
software systems. The benefit of model-based testing is primarily in automated
test case generation and automated analysis of the test results. In an MBT
process, test cases are automatically derived from a (preferably formal) model of
the specification and are executed on the implementation under test (IUT). MBT
is typically a black-box testing technique, in which the implementation is only
accessible through its interfaces and thus, test data is generally selected based on
the specification. Therefore, generated test suites may leave some untested gaps
in a given IUT and/or redundantly cover the same logical path several times.

To address this issue test models and test case generation processes can be
enriched with structural or behavioural information extracted from the imple-
mentation. This is a promising approach considering the existing techniques for
extracting models from implementations, in particular, recent learning-based
approaches inferring models from software (e.g., [1, 2]). Such models provide an
abstraction of the implementation based on its observable behaviour. Using these
models in testing improves the coverage of the IUT, up to the accuracy of the
extracted model.

This paper proposes a gray-box testing strategy in that test suites are gen-
erated considering both the specification and an abstraction of the IUT. With
such a test suite the coverage of the specification model and the implementa-
tion would be complementary to each other and hence, more faults could be

189

www.manaraa.com

uncovered. Moreover, such test suites are tailored to a given IUT and thus, a
fewer number of test cases are generated –to satisfy a certain testing goal– in
comparison to universal test suites that are supposed to detect faults in any
possible implementation. The main contribution of this work is considering the
partitioning of the input domain which can be obtained from (black-box) im-
plementations (e.g., by model learning techniques) in generating test suites. We
show that although such information may be generated for different purposes, it
can be used in test generation and does improve the coverage of the generated
test cases.

In this work, specifications and implementations are modelled with a specific
type of transition systems, called Symbolic Reactive State Machines (SRSMs).
Given the SRSMs of the specification and the IUT, a complete test suite is gen-
erated based on the, so-called, transition composition of these models. In gener-
ating test cases, the justification of the proposed data selection is demonstrated
by a special case of the uniformity hypothesis [3] –the theoretical foundation for
testing with a finite subset of values.

The rest of the paper is structured as follows: Section 2 provides an overview
of the related work. Section 3 introduces the formalism used in this paper and
Section 4 defines our notion of conformance. The proposed testing strategy is
outlined in Section 5. In Section 6, we provide the experimental results of exam-
ining the effectiveness of our approach. Section 7 discusses the future work and
concludes the paper.

2 Background and Related Work

Several black-box test case generation methods are proposed in the literature
for various formalisms (e.g., finite state machines [4, 5] and labeled transition
systems [6]). The completeness of these methods (i.e., specifying all possible
behaviour of a system) is typically explained with respect to a specified subset
of possible implementations which is refered to as a fault model [7]. This is
because in many practical cases, it is not possible to have a complete test suite
as such a test suite would be infinitely large.

Gray-box model-based testing strategies provide a combination of black-box
model-based testing with white-box testing to tune fault detection with respect
to a given implementation. For example, in [8], the structure of the tests is gen-
erated using MBT (from the specification model) and then a white-box testing
technique is used to find a set of concrete values for parameters that maximise
code coverage. The approach presented in this paper, in a similar way, considers
the IUT in generating test cases. However, it differs from [8] in that both the
structure and the parameters of test cases are influenced by a combination of a
test model and information from the implementation.

Our proposed approach has been largely established considering the promis-
ing results from existing learning-based techniques for inferring and extracting
models from implementations. Some of the techniques have focused on sequential
models typically in the form of FSMs (e.g., [9,10]) and some on data-dependant

190

www.manaraa.com

behaviour in the form of pre- and post-conditions (e.g., [11]). More recently,
EFSMs are considered to infer more complete models (combining control and
data). For example, Cassel et al. [2] introduce an active learning algorithm to
infer a class of EFSMs. Walkinshaw et al. [1] provide a model inference technique
(called MINT) which infers EFSMs from software executions. We believe that
the model inference techniques which, in particular, infer EFSMs can provide
the required abstract model of implementations in the context of our work (i.e.,
an inferred model can be translated into our formalism).

There are also a number of similar models, to our formalism, in the litera-
ture of MBT such as action machines (AM) [12], symbolic transition systems
(STS) [13], FSMs with symbolic inputs [14], and symbolic input output FSMs
(SIOFSM) [15]. SIOFSMs particularly support inputs with infinite domain. We
expect that each of these underlying models (and their associated test case gen-
eration algorithms) can be adopted in our approach.

Another closely related line of work is equivalence-class-based testing. The
theoretical foundation for this approach has been presented in [3] by the uni-
formity hypothesis, which states that it suffices to check the representatives of
sub-domains in which the behaviour is the same among all elements. We dis-
cuss the justification of our strategy based on this hypothesis. Huang et al. [16]
propose a complete model-based equivalence testing strategy applicable to reac-
tive systems with large, possibly infinite input data types but finite internal and
output data. Our approach is inspired by [16] and extends it by replacing the
heuristics for refinement with the information extracted from the IUT. It also
differs from [16] in that it allows for infinite output domains.

2.1 Motivating Example

To motivate this work, we use one of the benchmarks provided in [2], namely
the prepaid card, in which the card’s balance is limited to 500 SEK, and no
more than 300 SEK can be topped up in a single transaction. Fig. 1a illustrates
the behaviour of this card for the update balance operation. Variable a is the
amount to update the balance of the card, and variable b is the current balance
of the card. Labels of the form ‘C/O’ on transitions state that the transition is
triggered by inputs satisfying C and the outputs are updated according to O.

Assume that there is an implementation of this card and we have an abstract
model of it which is generated by RaLib [2]. Fig. 1b shows the learned model. As
it is observed in Fig. 1b, the learned model introduces a different partitioning of
the inputs comparing to the specification’s. This difference is typically observable
between a learned model and the already existing (reference) models. In this
work, we suggest to consider such information and we show that it will improve
the coverage of the specification and the IUT in a testing experiment. Note
that the abstract models extracted from implementations may not contain the
exact input-output relation. They largely provide useful information about the
partitioning of the input domain. Accordingly, we mainly consider and use the
complementary information about the partitioning of inputs in generating tests.

191

www.manaraa.com

(a) Specification (S∗PPC) (b) Learned model (T ∗PPC)

Fig. 1. The behaviour of the example prepaid card.

3 Preliminaries

For formal reasoning, we need a model of a specification, and also assume that
the behaviour of the IUT can be captured by some (unknown) formal model in a
given formalism. In the following, we introduce the formalism used in this work
to model specifications and abstractions of implementations, and then define
conformance in its context.

3.1 Symbolic Reactive State Machines

A Symbolic Reactive State Machine (SRSM) is a symbolic representation of
the state-based behaviour of a system, with a set of input/output variables. It
is symbolic as it explicitly uses the notion of variables, rather than concrete
values, in specifying transitions (e.g., data-dependent transitions) and outputs
(e.g., output as a function of input variables).

Definition 1 (Symbolic Reactive State Machine (SRSM)). An SRSM S∗
is a 6-tuple (S̄, s̄0, δ̄, λ̄, V,D), where

– S̄ is the non-empty and finite set of symbolic states,
– s̄0 ∈ S̄ is the initial symbolic state,
– V is the set of variables such that V = I ∪ O, i.e., V is partitioned into

disjoint sets I and O of input and output variables, respectively,
– D is the range of all variable valuations,
• DI : domain of input variables
• DO: domain of output variables

– δ̄ : S̄ × P(DI)→ S̄ is the transition function, and
– λ̄ : S̄ × P(DI)→ Ē(I) is the output function.
• E(I) is the set of expressions over input variables (I).
• Ē(I) ∈ E(I)× . . .× E(I)︸ ︷︷ ︸

|O|

, i.e., each expression gives the value of one

output variable.

192

www.manaraa.com

Notations. Input variables are enumerated as I = {x1, . . . , xk} and DI = Dx1
×

. . .×Dxk
is the domain of inputs. P(DI) is the powerset (the set of all subsets) of

DI , and x = (x1, . . . , xk) is the input variable vector. We use small letters (e.g.,
c) to represent a single valuation of the input vector (x = c ∈ DI) and capital
letters (e.g., C) to show a set of valuations of the input vector (C ∈ P(DI)).
Symbolic states are labelled with overscored letters (e.g., s̄, S̄). The Greek letter
ϕ is used to represent output functions and it is a vector of expressions (i.e.,
ϕ ∈ Ē(I)). Given a vector of expressions ϕ and an input c ∈ DI , ϕ[c] denotes the
output vector with the valuation of each expression for input c: ϕ[c] = o ∈ DO.

Example. Fig. 1a shows the behaviour of our example prepaid card as SRSM
S∗PPC = (S̄, s̄0, δ̄s, λ̄s, I ∪ O,DI ∪ DO), where S̄ = {s̄0, s̄1, s̄2}, s̄0 is the initial
state, I = {a}, DI = Da = N , O = {b}, DO = Db = [0, 500], δ̄s, and λ̄s are
defined based on the given transitions. (Note that the machine remains in a
same state and the outputs will remain unchanged for any input not satisfying
the conditions in the labels.)

3.2 Concrete and Symbolic Paths

The behaviour of an SRSM is described in terms of the outputs produced for
given inputs, which is formally represented by a set of paths (i.e., sequences
of transitions) in the model. In an SRSM model, there are two types of paths,
namely concrete paths and symbolic paths, which are defined below.

Definition 2 (Concrete Path). In an SRSM S∗ = (S̄, s̄0, δ̄, λ̄, V,D), a con-
crete path cp is a finite sequence s̄0(c1, s̄1)(c2, s̄2) . . . (ck, s̄k) such that ∃C ∈
P(DI) • δ̄(s̄i, C) = s̄i+1 ∧ ci+1 ∈ C, for 1 ≤ i ≤ k. State(cp) = s̄0 . . . s̄k,
In(cp) = c1c2 . . . ck, and Out(cp) = o1o2 . . . ok where ∃C ∈ P(DI) • λ̄(s̄i, C) =
ϕi+1 ∧ ci+1 ∈ C ∧ oi+1 = ϕi+1[ci+1], for 0 ≤ i < k. The set of all con-
crete paths in S∗ is denoted by Path(S∗) and for a set of concrete paths CP ,
In(CP) = {In(cp) | cp ∈ CP}.

Definition 3 (Symbolic Path). In an SRSM S∗ = (S̄, s̄0, δ̄, λ̄, V,D), a
symbolic path sp is a finite sequence s̄0(C1, s̄1)(C2, s̄2) . . . (Ck, s̄k) such that
δ̄(s̄i, Ci+1) = s̄i+1, for 1 ≤ i ≤ k. State(sp) = s̄0 . . . s̄k, In(sp) = C1C2 . . . Ck,
and Out(sp) = ϕ1ϕ2 . . . ϕk is the associated sequence of (output) expressions
where λ̄(s̄i, Ci+1) = ϕi+1, for 0 ≤ i < k. Also, a subpath of sp is a finite se-
quence s̄0(C ′1, s̄1)(C ′2, s̄2) . . . (C ′k, s̄k) such that C ′i ⊆ Ci, for 1 ≤ i ≤ k. The set
of all symbolic paths in S∗ is denoted by SymPath(S∗) and for a set of symbolic
paths SP , In(SP) is defined as {In(sp) | sp ∈ SP}.

Each transition represents a set of concrete transitions and thus, a symbolic
path sp specifies a set of concrete paths, called its interpretation.

Definition 4 (Symbolic Path Interpretation). In an SRSM S∗, the inter-
pretation of a symbolic path sp = s̄0(C1, s̄1) . . . (Cn, s̄n), denoted by JspK, is the
set of concrete paths defined as {cp1, cp2, . . .} such that for each cpi (i = 1, 2, . . .)

193

www.manaraa.com

– State(cpi) = State(sp),
– In(cpi) = ci,1ci,2 . . . ci,n such that ci,j ∈ Cj, for j = 1, 2, . . . , n
– Out(cpi) = ϕ1[ci,1]ϕ2[ci,2] . . . ϕn[ci,n], where Out(sp) = ϕ1ϕ2 . . . ϕn

A symbolic path can be partitioned into a set of subpaths such that these
paths do not have any concrete path in common and altogether, they cover all
the concrete paths in the main symbolic path.

Definition 5 (Symbolic Path Partitioning). In an SRSM S∗, a partitioning
of a symbolic path sp = s̄0(C1, s̄1) . . . (Cn, s̄n), denoted by Part(sp), is a set of
subpaths defined as Part(sp) = {sp1, sp2, . . . , spk} such that

1. ∀spi, spj ∈ Part(sp) • i 6= j =⇒ ∃0 < m ≤ n • Ci,m ∩ Cj,m = ∅
(In(spl) = Cl,1 . . . Cl,n), and

2. JspK =
⋃

p∈Part(sp)

JpK.

3.3 SRSM Models and Conformance

This section defines our notion of behavioural conformance between two SRSMs.

Definition 6 (Conformance). Assume that S∗ and T ∗ are two SRSMs defined
over the same I/O variables. Then, T ∗ conforms to S∗, denoted by T ∗ conf S∗,
if and only if the following two statements hold.

1. ∀seqin ∈ In(Path(S∗)) ∃cp ∈ Path(T ∗) • In(cp) = seqin, and
2. ∀cp ∈ Path(T ∗) (∃cp′ ∈ Path(S∗) • In(cp) = In(cp′)) =⇒
∃cp′′ ∈ Path(S∗) • In(cp) = In(cp′′) ∧Out(cp) = Out(cp′′).

The first statement indicates that all the input sequences defined in the
specification should be defined in the IUT. In particular, for non-deterministic
behaviour, it indicates that the IUT should at least have one concrete path with
the same inputs. Then, the second statement says that for those concrete paths
whose inputs are defined in the specification, the IUT should satisfy the specifi-
cation. The statement also implies that the IUT may have additional behaviour
(i.e., sequences of inputs which are not defined in the specification).

The above definition of conformance implies that we need to examine each
and every path in Path(S∗) with all paths in Path(T ∗) and vice versa in order
to detect a non-conformant IUT. However, this is not feasible in most practical
contexts (e.g., infinite input domain or a large number of concrete paths). We
address this problem by defining conformance in terms of symbolic paths. To
do so, we first define two relationships, namely compatibility and containment,
for comparing two symbolic paths with each other. These relations allow deter-
mining conformance by comparing symbolic paths rather than concrete paths.
Subsequently, we show how checking conformance at the symbolic level can be
reduced to checking conformance of a finite number of concrete paths in their
interpretation.

194

www.manaraa.com

Definition 7 (Symbolic Path Compatibility). A symbolic path sp is com-
patible with a symbolic path sp′, denoted by sp ≺ sp′, if and only if
In(sp) v In(sp′), where for In(sp) = C1C2 . . . Cn and In(sp′) = C ′1C

′
2 . . . C

′
n,

In(sp) v In(sp′) holds if and only if Ci ⊆ C ′i for 1 ≤ i ≤ n.

Definition 8. Two expressions ϕ and ϕ′ are equivalent over a set of inputs

X ∈ P(DI), denoted by ϕ
X≡ ϕ′, if and only if ∀x ∈ X •ϕ[x] = ϕ′[x]. If X = DI ,

then ϕ and ϕ′ are equivalent which is denoted by ϕ ≡ ϕ′.

Example. Consider symbolic paths sp1 ∈ SymPath(S∗PPC) and sp′1 ∈
SymPath(T ∗PPC), defined as follows. sp′1 is not compatible with sp1 as In(sp′1) 6v
In(sp1) and therefore sp′1 6≺ sp1.

sp1 = s̄0 ({a ≤ 300}, s̄1)({a ≤ 300}, s̄1); In(sp1) = ({a ≤ 300})({a ≤ 300})
sp′1 = t̄0 ({a ≤ 200}, t̄0)({200 < a ∧ a − b < 300}, t̄1); In(sp′1) = ({a ≤

200})({200 < a ∧ a− b < 300}) �

Definition 9 (Symbolic Path Containment). A symbolic path sp is
contained in a symbolic path sp′, denoted by sp � sp′, if and only if
sp ≺ sp′ ∧ Out(sp) ≡ Out(sp′), where for Out(sp) = ϕ1ϕ2 . . . ϕn and

Out(sp′) = ϕ′1ϕ
′
2 . . . ϕ

′
n, Out(sp) ≡ Out(sp) holds if and only if ϕi

Ci≡ ϕ′i for
1 ≤ i ≤ n, where In(sp) = C1C2 . . . Cn.

Herein, the main issue is to find out whether two expressions are equivalent.
It is not always possible to evaluate and compare two expressions for all the
input values, for example when inputs are infinite. To overcome this issue, we
introduce and define n-uniformity between two functions (expressions), which is
defined w.r.t. the set of inputs on which they are both defined.

Definition 10 (n-Uniformity). Let f : Df → DO and g : Dg → DO be two
functions where Df , Dg ∈ P(DI). Then, f and g are n-uniform over Df ∩Dg,
denoted by f ≈n g, if and only if n is the smallest number for which the following
statement holds.

(∀0 ≤ i ≤ n ∃xi ∈ Df ∩Dg • (∀0 ≤ j ≤ n • i 6= j =⇒ xi 6= xj) ∧ f(xi) =

g(xi)) =⇒ f
Df∩Dg≡ g.

The degree of uniformity between f and g is n, if f ≈n g.

Corollary 1. Let f : Df → DO and g : Dg → DO be two functions where
Df , Dg ∈ P(DI) and f ≈n g. Then n < |Df ∩Dg|.

Accordingly, if the degree of uniformity between output functions in two sym-
bolic paths is determined, it is possible to find out if those paths are compatible
or not and this could be done with a finite number of values. This is explained
by the following lemma.

Lemma 1. Let S∗ = (S̄, s̄0, δ̄s, λ̄s, V,D), T ∗ = (T̄ , t̄0, δ̄t, λ̄t, V,D),
sp ∈ SymPath(S∗), sp′ ∈ SymPath(T ∗). Then, sp � sp′ if and only if

195

www.manaraa.com

1. sp ≺ sp′
2. ϕi and ϕ′i, 1 ≤ i ≤ n, produce the same output for di+1 distinct input values,

where Out(sp) = ϕ1ϕ2 . . . ϕn and Out(sp′) = ϕ′1ϕ
′
2 . . . ϕ

′
n and ϕi ≈di

ϕ′i.

Using the above lemma, for any pair of symbolic paths sp and sp′, we can
find the minimum number of distinct sequences of inputs required to determine
if sp � sp′ or not. This number, denoted by DistDeg(sp, sp′), can be calculated
regarding the n-uniformity between the output functions associated to these
paths.

Example. Consider symbolic paths sp ∈ SymPath(S∗PPC) and sp′ ∈
SymPath(T ∗PPC). In(sp′) v In(sp) and hence sp′ ≺ sp. The output functions
in these models (ϕ and ϕ′) are polynomials of degree one, therefore ϕ ≈1 ϕ

′

and DistDeg(sp, sp′) = 2: we can determine if sp′ � sp with two sequences of
inputs.

sp = s̄0 ({a ≤ 300}, s̄1)({a ≤ 300}, s̄1); In(sp) = ({a ≤ 300})({a ≤ 300}),
Out(sp) = ϕ = (b = a)(b = a)

sp′ = t̄0 ({a ≤ 200}, t̄0)({a ≤ 200}, t̄0); In(sp′) = ({a ≤ 200})({a ≤ 200}),
Out(sp′) = ϕ′ = (b = a)(b = a)

�
Although n-uniformity is an abstract concept, as the above example sug-

gests, in many practical cases, it can be determined by statically analysing the
model/program expressions.

4 Conformance Testing for SRSMs

This section formalises conformance testing in the context of this work and the
introduced formal model.

4.1 Test case and Test Suite

A test case, defined below, specifies a sequence of inputs and their corresponding
expected set of outputs according to the specification.

Definition 11 (Test Case and Test Suite).

1. A test case tc is a tuple (inseq, outseq), where
– inseq is a finite sequence of inputs c1c2 . . . ck such that ci ∈ DI for 1 ≤
i ≤ k, and

– outseq is a set of finite sequences of outputs {O1, O2, . . . , On} where
Oi = oi,1 . . . oi,k such that oi,j ∈ DO, for 1 ≤ i ≤ n and 1 ≤ j ≤ k.

By definition, In(tc) = c1c2 . . . ck and Out(tc) = {O1, O2, . . . , On}.
2. A test suite is a finite set of test cases.

In the context of this work, test cases are executed to a system, one by one: the
inputs are given to the system and the outputs are observed. The comparison of
the observed behaviour with the expected behaviour determines the test verdict
(pass/fail).

196

www.manaraa.com

Definition 12 (Test Case Execution). Execution of a test case tc on an
SRSM S∗, denoted by Exec(tc, S∗), gives the sequence of outputs specified
by the concrete path cp ∈ Path(S∗) such that In(cp) = In(tc) and then,
Exec(tc, S∗) = Out(cp). If there is no such concrete path the test case is not
applicable on the model which is denoted by Exec(tc, S∗) = ⊥.

Definition 13 (Test Verdict).

1. An SRSM S∗ passes a test case tc, denoted by Pass(S∗, tc), if and only if it
is applicable on S∗ and Exec(tc, S∗) ∈ Out(tc).
If S∗ does not pass a test case tc, it fails, denoted by Fail(S∗, tc).

2. An SRSM S∗ passes a test suite TS, denoted by Pass(S∗, TS), if and only
if ∀tc ∈ TS • Pass(S∗, tc).
If S∗ does not pass a test suite TS, it fails, denoted by Fail(S∗, TS).

4.2 Complete Test Suite

An ideal test suite should specify all possible behaviours of a system and its
specification. Such a test suite is called complete. However, this is not possible in
most practical cases. A common and typical approach to address this issue is to
restrict the power of a test suite to only detecting conformance or only detecting
non-conformance (i.e., soundness and exhaustiveness in [6]).

We define completeness in the context of our proposal in that we generate a
test suite specifically enriched for testing a particular implementation such that

1. there would be no uncovered symbolic behaviour in any of the models (cov-
erage),

2. none of the test cases fails, if the implementation conforms to the specifica-
tion (soundness), and

3. for any non-conformant behaviour in the implementation, there is a specific
test case which discovers that behaviour (relative exhaustiveness).

Accordingly, a complete test suite is the one that satisfies test coverage,
soundness, and relative exhaustiveness.

Definition 14 (Test Coverage). A test suite TS covers an SRSM S∗ if and
only if ∀sp ∈ SymPath(S∗) ∃tc ∈ TS • In(tc) ∈ In(JspK).
Definition 15 (Soundness). A test suite TS is sound w.r.t. an SRSM S∗ if
and only if ∀T ∗ • T ∗ conf S∗ =⇒ ∀tc ∈ TS • Pass(T ∗, tc).

Definition 16 (Relative Exhaustiveness). A test suite TS is exhaustive rel-
ative to SRSMs S∗, the reference model, and T ∗, the model to be tested, if and
only if the following statements hold.

1. ∀sp ∈ SymPath(S∗) ∀sp′ ∈ SymPath(T ∗) • In(JspK)∩ In(Jsp′K) 6= ∅ =⇒
∃tc ∈ TS • In(tc) ∈ In(JspK) ∩ In(Jsp′K).

2. ∀sp ∈ SymPath(S∗) ∃Part(sp) • ∃p ∈ Part(sp) • In(JpK) ∩
In(Path(T ∗)) = ∅ =⇒ ∃tc ∈ TS • In(tc) ∈ In(JpK) ∧ Fail(T ∗, tc).

197

www.manaraa.com

3. ∀sp ∈ SymPath(T ∗) ∃Part(sp) • ∃p ∈ Part(sp) • In(JpK) ∩
In(Path(S∗)) = ∅ =⇒ ∃tc ∈ TS • In(tc) ∈ In(JpK).
In the next section, our proposed testing strategy to generate a complete test

suite is presented.

5 Gray-Box Conformance Testing

In this section, we define the transition composition of two SRSM models which
provides an integrated view of the transitions of both models in one model,
regardless of their outputs. We then use this model to generate the target test
suite.

5.1 Transition Composition

Intuitively, the transition composition is a (sub-)product of the models in that
the transition function is defined based on the intersection of transitions.

Definition 17 (Transition Composition). Let S∗ = (S̄, s̄0, δ̄s, λ̄s, V,D) and
T ∗ = (T̄ , t̄0, δ̄t, λ̄t, V,D) be two SRSMs with the same I/O variables. M∗ =
(M̄, m̄0, δ̄, ∅, V,D) is the transition composition of S∗ and T ∗, denoted by
M∗ = trComp(S∗, T ∗), where

– M̄ ⊆ (S̄ ∪ {errs})× (T̄ ∪ {errt}),
– m̄0 = (s̄0, t̄0),
– ∀m̄ = (s̄, t̄) ∈ M̄, C ∈ P(DI) • s̄ ∈ S̄ ∧ t̄ ∈ T̄ =⇒

δ̄(m̄, C) =





(s̄′, t̄′) : s̄′ ∈ S̄ ∧ t̄′ ∈ T̄ ∧ ∃C ′, C ′′ ∈ P(DI) • δ̄s(s̄, C
′) = s̄′

∧ δ̄t(t̄, C ′′) = t̄′ ∧ C ′ ∩ C ′′ 6= ∅ ∧ C = C ′ ∩ C ′′
(s̄′, errt) : s̄′ ∈ S̄ ∧ ∃C ′ ∈ P(DI) • δ̄s(s̄, C

′) = s̄′

∧(∃Ce ⊆ C ′ • ∀t̄′ ∈ T̄ , C ′′ ∈ P(DI) •
δ̄t(t̄, C

′′) = t̄′ ∧ Ce ∩ C ′′ = ∅) ∧ C = Ce

(errs, t̄
′) : t̄′ ∈ T̄ ∧ ∃C ′ ∈ P(DI) • δ̄t(t̄, C

′) = t̄′

∧(∃Ce ⊆ C ′ • ∀s̄′ ∈ S̄, C ′′ ∈ P(DI) •
δ̄s(s̄, C

′′) = s̄′ ∧ Ce ∩ C ′′ = ∅) ∧ C = Ce

– ∀m̄ = (s̄, errt) ∈ M̄, C ∈ P(DI) • s̄ ∈ S̄ =⇒
δ̄(m̄, C) = (s̄′, errt) if s̄′ ∈ S̄ ∧ ∃C ′ ∈ P(DI) • δ̄s(s̄, C ′) = s̄′ ∧C = C ′, and

– ∀m̄ = (errs, t̄) ∈ M̄, C ∈ P(DI) • t̄ ∈ T̄ =⇒
δ̄(m̄, C) = (errs, t̄

′) if t̄′ ∈ T̄ ∧ ∃C ′ ∈ P(DI) • δ̄t(t̄, C
′) = t̄′ ∧ C = C ′.

In a transition composition, the outgoing transitions on each state are defined
based on the intersection of the valid input domains of the transitions of the
components. The specific symbols errs and errt identify situations in which
there is a set of inputs defined in one model but not in the other. Note that
we keep tracking states involving errs and errt as we do not want to lose any
possible transition in any of the models.

198

www.manaraa.com

Corollary 2. Let S∗ = (S̄, s̄0, δ̄s, λ̄s, V,D), T ∗ = (T̄ , t̄0, δ̄t, λ̄t, V,D), M∗ =
(M̄, m̄0, δ̄, ∅, V,D), and M∗ = crComp(S∗, T ∗). Then for all m̄, m̄′ ∈ M̄ and
C ∈ P(DI) such that δ̄(m̄, C) = m̄′ the following two statements hold

– ∃s̄, s̄′ ∈ S̄, C ′ ∈ P(DI) • m̄ ∈ {s̄}× (T̄ ∪{errt})∧ m̄′ ∈ {s̄′}× (T̄ ∪{errt})∧
δ̄s(s̄, C

′) = s̄′ =⇒ C ⊆ C ′
– ∃t̄, t̄′ ∈ T̄ , C ′ ∈ P(DI) • m̄ ∈ (S̄ ∪{errs})×{t̄}∧ m̄′ ∈ (S̄ ∪{errs})×{t̄′}∧
δ̄t(t̄, C

′) = t̄′ =⇒ C ⊆ C ′

Example. Fig. 2 shows a part of the transition composition of the models in
Fig. 1a and Fig. 1b.

Fig. 2. An excerpt of the transition composition of S∗PPC and T ∗PPC .

The transition composition of two SRSM models has two main properties
which allow generating a complete test suite. First, according to Definition 18,
it covers both of its underlying models (Theorem 1). Second, all the symbolic
paths in the transition composition is at least compatible with a symbolic path
in one of the underlying models indicating that the transition composition does
not have any extra behaviour (Theorem 2).

Definition 18 (Model Coverage). An SRSM S∗ covers an SRSM T ∗ if and
only if ∀sp ∈ SymPath(T ∗) ∃sp′ ∈ SymPath(S∗) • sp′ ≺ sp.

Theorem 1. Let S∗ and T ∗ be two SRSMs and M∗ = trComp(S∗, T ∗). Then
M∗ covers S∗ and T ∗.
Theorem 2. Let S∗ and T ∗ be two SRSMs and M∗ = trComp(S∗, T ∗). Then

– ∀sp ∈ SymPath(M∗) • (∀m̄ ∈ State(sp) • m̄ ∈ S̄ × (T̄ ∪ {errt})) =⇒
∃sp′ ∈ SymPath(S∗) • sp ≺ sp′.

– ∀sp ∈ SymPath(M∗) • (∀m̄ ∈ State(sp) • m̄ ∈ (S̄ ∪ {errs}) × T̄)) =⇒
∃sp′ ∈ SymPath(T ∗) • sp ≺ sp′.

199

www.manaraa.com

5.2 Test Suite Generation

Having defined the transition composition of two SRSMs, we next generate a
complete test suite. First, we define the test cases for each symbolic path in the
transition composition, which are then accumulated in the final and complete
test suite.

Definition 19. Let S∗ be the specification model, T ∗ be the implementation
model, and M∗ = trComp(S∗, T ∗) be the transition composition. For each
sp ∈ SymPath(M∗), TC(sp) is a set of test cases to examine the compatibility
between the two symbolic paths in T ∗ and S∗ in which sp is contained, and
defined as follows.

1. If there exists sp′ ∈ SymPath(S∗) and sp′′ ∈ SymPath(T ∗) such that
sp ≺ sp′ and sp ≺ sp′′, then TC(sp) is a set of test cases {tc1, . . . , tck},
where k = DistDeg(sp′, sp′′), such that In(tci) ⊆ In(JspK) and Out(tci) is
determined the output(s) produced by S∗ for In(tci), 1 ≤ i ≤ k.

2. If there exists sp′ ∈ SymPath(S∗) such that sp ≺ sp′ and there is no
sp′′ ∈ SymPath(T ∗) such that sp ≺ sp′′, then TC(sp) contains only one
test case tc such that In(tc) ⊆ In(JspK) and Out(tc) is the output(s) produced
by S∗ for In(tc).

3. If there exists sp′ ∈ SymPath(T ∗) such that sp ≺ sp′ and there is no
sp′′ ∈ SymPath(S∗) such that sp ≺ sp′′, then TC(sp) contains only one test
case tc such that In(tc) ⊆ In(JspK) and Out(tc) = ⊥ (i.e., undefined). Note
that such a test case observes the behaviours not specified in the specification.

Definition 20 (Composition-based Test Suite). Given the specification
model S∗, the implementation model T ∗, and their transition compositionM∗, a
composition-based test suite, denoted by CompTS(S∗, T ∗), is defined as follows.

CompTS(S∗, T ∗) =
⋃

sp∈SymPath(M∗)

TC(sp)

The following theorem demonstrates that a composition-based test suite sat-
isfies test coverage, soundness and exhaustiveness properties.

Theorem 3. Let S∗ be the specification model, T ∗ be the implementation model,
andM∗ = trComp(S∗, T ∗). Then, CompTS(S∗, T ∗) is a sound and exhaustive
test suite and covers S∗ and T ∗.

6 Experimental Results

In order to check the effectiveness of our approach, we use our method in the con-
text of a well-known example from the European Train Control System (ETCS),
namely the Ceiling Speed Monitor (CSM) module which monitors the speed of a
train and triggers the required actions if the maximal speed is exceeded. A com-
plete description of the system can be found in [19]. We applied our method in

200

www.manaraa.com

testing six different (faulty) implementations of the CSM module and compared
the outcomes with random testing and the equivalence class testing introduced
in [16]. Implementations are mutants of a correct implementation of the CSM
module. In the first implementation (IUT1) the faults are related to boundary
values (e.g., < replaced by ≤). In the next four implementations (IUT2, IUT3,
IUT4, and IUT5), the faults are in the guard condition, but they are not related
to boundary values. Moreover, in IUT4 and IUT5, the difference between the sets
of inputs defined by the correct condition and the wrong condition is too narrow
(i.e., for limited number of input values the difference could be discovered). The
last implementation (IUT6) contains a fault in an output function associated to
one of the transitions.

In the experiment, we mainly investigated the question whether our method
observed the faults or not. We also considered the number of test cases gener-
ated by each method. Additionally, in order to have an approximation of the
overhead associated with our method, we considered the time required to gener-
ate the transition composition. This time is computed based on the number of
basic computation steps in generating the composition (assuming that all steps
consume a constant amount of time, this time is proportional to the number of
steps).

In random testing, test cases are created by generating random values in
the appropriate data ranges. For equivalence class testing, we considered a re-
finement of the initial coarsest input equivalence class partitioning (IECP) that
reflects all case distinctions visible in guard conditions of the CSM model, which
implies the fault model for this testing method. Note that the number of test
cases generated by IECP is the same for all the six cases. We used the test data
provided in [20], for the number of generated test cases by IECP. For random
testing, in each case, a random test suite of the same length as our method’s,
was selected and used for comparison.

Table 1 summarises the results of this experiment. Basically, the results show
that our method performs better than random testing with the same number of
test cases. They also show that in cases the behaviour of the IUT lies outside
the fault domain of the IECP testing, in particular when the input equivalence
classes are narrow, our approach performs better than IECP. This is because,
in such cases, the desired input values have very low probabilities to be chosen.
Therefore, in both random testing and IECP, an increase in the number of test
cases has limited effect on their testing strength. The IECP testing could not kill
IUT4 and IUT5 which are outside its fault domain and have narrow equivalence
classes. IUT2 and IUT3 are both out of the fault domain and the set of inputs
to discover their faults is not narrow (i.e., a proper input values could be chosen
by random input selection). However, only IUT3 was killed by IECP. Finally,
the time required to generate the transition composition and the number of test
cases could be an indication of the efficiency of our method.

Nevertheless, this experiment provides a preliminary result. In particular,
having treated only one type of case study is a threat to the validity of our
results. To remedy this, we plan to carry out more testing experiments consid-

201

www.manaraa.com

ering different kinds of cases. To address the efficiency and scalability question
more thoroughly, in addition to more case studies, we need to collect additional
information from other methods to have a valid comparison between methods,
such as the time required to transform the original test model into the desired
formalism.

Table 1. Experimental results

IUT Random Testing IECP Our Method

Killed No. TCs Killed No. TCs Killed No. TCs No. steps

1 5 24 3 186 3 24 18

2 5 30 5 186 3 30 19

3 5 25 3 186 3 25 19

4 5 37 5 186 3 37 22

5 5 24 5 186 3 24 21

6 3 21 3 186 3 21 16

7 Conclusions and Future Work

In this paper, we presented a gray-box model-based testing strategy in that test
suites are generated considering both the specification and an abstraction of the
IUT. Specifications and implementations abstraction are modelled as Symbolic
Reactive State Machines (SRSMs), which are finite state machines with sym-
bolic input and output. Given the SRSMs of a specification and an IUT, test
cases are generated based on the transition composition of these models. We
considered models with infinite input domain and then introduced the notion of
n-uniformity which allows us confining the number of test cases for each symbolic
path. We studied and proved coverage, soundness, and relative exhaustiveness
of the proposed approach.

As for future work, we plan to roll out more testing experiments to inves-
tigate the applicability of the proposed strategy (in particular, the notion of
n-uniformity) in different situations and discover its limitations. Moreover, we
plan to study models with infinite set of symbolic paths and, then, how to select
a finite subset of paths sufficient to generate a complete test suite, according
to the regularity hypothesis [3]. Finally, we would like to work on efficient al-
gorithms for generating the transition composition (e.g., adapting bi-simulation
algorithms) and also for determining n-uniformity.

References

1. Walkinshaw, N., Taylor, R., Derrick, J. Inferring extended finite state machine
models from software executions. Empir. Software Eng. 21: 811-853. (2016)

202

www.manaraa.com

2. Cassel, S., Howar, F., Jonsson, B., and Steffen, B. Active learning for extended
finite state machines. Formal Asp. Comput. 28(2): 233-263. (2016)

3. Gaudel, M.C.: Testing can be formal, too. In Proc. of TAPSOFT’95. pp. 82-96.
Springer-Verlag London. (1995)

4. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE TSE
4(3): 178-187. (1978)

5. Petrenko, A., von Bochmann, G., Yao, M.Y.: On fault coverage of tests for finite
state specifications. Computer Networks and ISDN Systems 29(1): 81-106. (1996)

6. Tretmans, J.: Model Based Testing with Labelled Transition Systems. In Formal
Methods and Testing: An Outcome of the FORTEST Network, Revised Selected
Papers. Lecture Notes In Computer Science 4949: 1-38. (2008)

7. Petrenko A., Yevtushenko N., Bochmann G.: Fault models for testing in context.
In Formal description techniques IX–theory, application and tools. pp. 163-178.
Springer US. (1996)

8. Kicillof, N., Grieskamp, W., Tillmann, N., Braberman, V.: Achieving both model
and code coverage with automated gray-box testing. In Proc. of A-MOST’07. pp.
1-11. ACM. (2007)

9. Giantamidis, G., Tripakis, S.: Learning Moore Machines from Input-Output
Traces. In Proc. of FM’16. pp. 291-309. Springer International Publishing. (2016)

10. Lee, C,. Chen, F., Rosu, G.: Mining Parametric Specifications. In Proc. of ICSE’11,
pp. 591-600. ACM. (2011)

11. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically Discovering
Likely Program Invariants to Support Program Evolution. IEEE TSE 27(2): 99-
123. (2001)

12. Grieskamp, W., Tillmann, N., Campbell, C., Schulte, W., Veanes, M.: Action
machines – towards a framework for model composition, exploration and confor-
mance testing based on symbolic computation. In Proc. of QSIC’05. pp. 72-29.
IEEE. (2006).

13. Frantzen, L., Tretmans, J., Willemse, T.: A symbolic framework for model-based
testing. In Proc. of FATES/RV’06. pp. 40-54. Springer-Verlag Berlin. (2006)

14. Petrenko, A., Simao, A.: Checking experiments for finite state machines with
symbolic inputs. In Proc. of ICTSS’15. pp. 3-18. Springer-Verlag New York. (2015)

15. Petrenko, A.: Checking experiments for symbolic input/output finite state ma-
chines. In Proc. of IEEE ICSTW’16. pp. 229-237. (2016)

16. Huang, W.-L., Peleska, J.: Complete model-based equivalence class testing. Int.
Journal on Software Tools for Technology Transfer 18(3): 262-283. Springer-Verlag
Berlin. (2016)

17. Farzan, A., Holzer, A., Veith, H.: Perspectives on white-box testing: Coverage,
concurrency, and concolic execution. In Proc. of ICST’15. pp. 1-11. IEEE. (2015)

18. Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random testing.
In SIGPLAN Conference on Programming Language Design and Implementation.
pp. 213-223. ACM. (2005)

19. Braunstein C., Peleska J., Schulze U., Hübner F., Huang W., Haxthausen A., Vu
Hong L.: A SysML Test Model and Test Suite for the ETCS Ceiling Speed Monitor:
Technical report, Work Package 4. Technical University of Denmark. (2014)

20. Hübner F., Huang W., Peleska J.: Experimental Evaluation of a Novel Equivalence
Class Partition Testing Strategy. Tests and Proofs Lecture Notes in Computer
Science 9154: 155-172. (2015)

203

www.manaraa.com

LittleDarwin: a Feature-Rich and Extensible
Mutation Testing Framework for
Large and Complex Java Systems

Ali Parsai, Alessandro Murgia, and Serge Demeyer

Antwerp Systems and Software Modelling Lab
University of Antwerp

{ali.parsai,alessandro.murgia,serge.demeyer}@uantwerpen.be

Abstract. Mutation testing is a well-studied method for increasing the
quality of a test suite. We designed LittleDarwin as a mutation testing
framework able to cope with large and complex Java software systems,
while still being easily extensible with new experimental components.
LittleDarwin addresses two existing problems in the domain of mutation
testing: having a tool able to work within an industrial setting, and yet,
be open to extension for cutting edge techniques provided by academia.
LittleDarwin already offers higher-order mutation, null type mutants,
mutant sampling, manual mutation, and mutant subsumption analysis.
There is no tool today available with all these features that is able to
work with typical industrial software systems.

Keywords: Software Testing, Mutation Testing, Mutation Testing Tool,
Complex Java Systems

1 Introduction

Along with the popularity of agile methods in recent times came an emphasis on
test-driven development and continuous integration [5,10]. This implies that de-
velopers are interested in testing their software components early and often [28].
Therefore, the quality of the test suite is an important factor during the evo-
lution of the software. One of the extensively studied methods to improve the
quality of a test suite is mutation testing [8].

Mutation testing was first proposed by DeMillo, Lipton, and Sayward to
measure the quality of a test suite by assessing its fault detection capabilities [8].
Mutation testing has been shown to simulate faults realistically [4, 17]. This
is because the faults introduced by each mutant are modeled after common
mistakes developers make [16]. Mutation testing is demonstrated to be a more
powerful coverage criteria in comparison with data-flow, statement, and branch
coverage [11,43].

Recent trends in scientific literature indicate a surge in popularity of this
technique, along with an increased usage of real projects as the subjects of scien-
tific experiments [16]. In literature, topics such as creating more robust mutants

204

www.manaraa.com

using higher-order mutation [15,20,32,35], reducing redundancy among mutants
using mutant subsumption [3, 24, 34], and reducing the number of mutants us-
ing mutant selection [12, 13, 44] are gaining popularity. Despite its benefits, the
idea of mutation testing is not widely used in industry. Consequently, mutation
testing research stays behind since it lacks fundamental experiments on indus-
trial software systems. We believe that, beyond the computationally expensive
nature of mutation testing [31], the reluctance of industry can stem from the
shortage of mutation testing tools that can both (i) work on large and complex
systems, and (ii) incorporate new and upcoming techniques as an experimental
framework.

In this paper, we try to fill this gap by introducing LittleDarwin. LittleDar-
win is designed as a mutation testing framework aiming to target large and
complex systems. The design decisions are geared towards a simple architecture
that allows the addition of new experimental components, and fast prototyping.
In its current version, LittleDarwin facilitates experimentation on higher-order
mutation, null type mutants, mutant sampling, manual mutation, and mutant
subsumption analysis. LittleDarwin has been used for experimentation on several
large and complex open source and industrial projects [36,37,38].

The rest of the paper is structured as follows. We provide background in-
formation about mutation testing in Section 2. We explain the design and the
implementation of our tool in Section 3, and summarize the experiments that
have been performed using our tool in Section 4. We conclude the paper in
Section 5.

2 Mutation Testing

Mutation testing1 is the process of injecting faults into a software system to verify
whether the test suite detects the injected fault. Mutation testing starts with a
green test suite — a test suite in which all the tests pass. First, a faulty version
of the software is created by introducing faults into the system (Mutation). This
is done by applying a known transformation (Mutation Operator) on a certain
part of the code. After generating the faulty version of the software (Mutant), it
is passed onto the test suite. If there is an error or failure during the execution of
the test suite, the mutant is marked as killed (Killed Mutant). If all tests pass, it
means that the test suite could not catch the fault, and the mutant has survived
(Survived Mutant) [16].

Mutation Operators. A mutation operator is a transformation which in-
troduces a single syntactic change into its input. The first set of mutation op-
erators were reported in King et al. [19]. These mutation operators work on
essential syntactic entities of the programming language such as arithmetic, log-
ical, and relational operators. They were introduced in the tool Mothra which

1 The idea of mutation testing was first mentioned by Lipton, and later developed by
DeMillo, Lipton and Sayward [8]. The first implementation of a mutation testing
tool was done by Timothy Budd in 1980 [6].

205

www.manaraa.com

was designed to mutate the programming language FORTRAN77. In 1996, Of-
futt et al. determined that a selection of few mutation operators is enough to
produce similarly capable test suites with a four-fold reduction of the number
of mutants [29]. This reduced-set of operators remained more or less intact in
all subsequent research papers. With the advent of object-oriented programming
languages, new mutation operators were proposed to cope with the specifics of
this programming paradigm [18,25].

Equivalent Mutants. If the output of a mutant for all possible input values
is the same as the original program, it is called an equivalent mutant. It is not
possible to create a test case that passes for the original program and fails for
an equivalent mutant, because the equivalent mutant is indistinguishable from
the original program. This makes the creation of equivalent mutants undesir-
able, and leads to false positives during mutation testing. In general, detection
of equivalent mutants is undecidable due to the halting problem [30]. Manual in-
spection of all mutants is the only way of filtering all equivalent mutants, which
is impractical in real projects due to the amount of work it requires. Therefore,
the common practice within today’s state-of-the-art is to take precautions to
generate as few equivalent mutants as possible, and accept equivalent mutants
as a threat to validity (accepting a false positive is less costly than removing a
true positive by mistake [9]).

Mutation Coverage. Mutation testing allows software engineers to monitor
the fault detection capability of a test suite by means of mutation coverage (see
Equation 1) [16]. A test suite is said to achieve full mutation test adequacy
whenever it can kill all the non-equivalent mutants, thus reaching a mutation
coverage of 100%. Such test suite is called a mutation-adequate test suite.

Mutation Coverage =
Number of killed mutants

Number of all non-equivalent mutants
(1)

Higher-Order Mutants. First-order mutants are the mutants generated
by applying a mutation operator on the source code only once. By applying mu-
tation operators more than once we obtain higher-order mutants. Higher-order
mutants can also be described as a combination of several first-order mutants.
Jia et al. introduced the concept of higher-order mutation testing and discussed
the relation between higher-order mutants and first-order mutants [14].

Mutant Subsumption. Mutant subsumption is defined as the relationship
between two mutants A and B in which A subsumes B if and only if the set of inputs
that kill A is guaranteed to kill B [23]. The subsumption relationship for faults
has been defined by Kuhn in 1999 [21], but its use for mutation testing has been
popularized by Jia et al. for creating hard to kill higher-order mutants [14]. Later
on, Ammann et al. tackled the theoretical side of mutant subsumption [3]. In
their paper, Ammann et al. define dynamic mutant subsumption, which redefines
the relationship using test cases. Mutant A dynamically subsumes Mutant B if
and only if (i) A is killed, and (ii) every test that kills A also kills B. The main
purpose behind the use of mutant subsumption is to reliably detect redundant
mutants, which create multiple threats to the validity of mutation testing [34].

206

www.manaraa.com

This is often done by determining the dynamic subsumption relationship among
a set of mutants, and keeping only those that are not subsumed by any other
mutant.

Mutant Sampling. To make mutation testing practical, it is important to
reduce its execution time. One way to achieve this is to reduce the number of
mutants. A simple approach to mutant reduction is to randomly select a set of
mutants. This idea was first proposed by Acree [2] and Budd [6] in their PhD
theses. To perform random mutant sampling, no extra information regarding
the context of the mutants is needed. This makes the implementation of this
technique in mutation testing tools easier. Because of this, and the simplicity of
random mutant sampling, its performance overhead is negligible. Random mu-
tant sampling can be performed uniformly, meaning that each mutant has the
same chance of being selected. Otherwise, random mutant sampling can be en-
hanced by using heuristics based on the source code. The percentage of mutants
that are selected determines the sampling rate for random mutant sampling.

3 Design and Implementation

In this section, we discuss the implementation details of LittleDarwin, and pro-
vide information on our design decisions.

3.1 Algorithm

LittleDarwin is designed with simplicity in mind, in order to increase the flex-
ibility of the tool. To this effect, it mutates the Java source code rather than
the byte code in order to defer the responsibility of compiling and executing
the code to the build system. This allows LittleDarwin to remain as flexible as
possible regarding the complexities stemming from the build and test structures
of the target software. The procedure is divided into two phases: Mutation Phase
(Algorithm 1), and Test Execution Phase (Algorithm 2).

Mutation Phase. In this phase, the tool creates the mutants for each source
file. LittleDarwin first searches for all source files contained in the path given as
input, and adds them to the processing queue. Then, it selects an unprocessed
source file from the queue, parses it, applies all the mutation operators, and
saves all the generated mutants.

Input : Java source files
Output: Mutated Java source files

queue ← all Java source files;
while queue 6= ∅ do

srcFile ← queue.pop();
mutants[srcFile] ← mutate(srcFile);

end
return mutants;

Algorithm 1: Mutation Phase

207

www.manaraa.com

Test Execution Phase. In this phase, the tool executes the test suite for
each mutant. First the build system is executed without any change to ensure
that the test suite runs “green”. Then, a source file along with its mutants are
read from the database, and the output of the build system is recorded for each
mutant. If the build system fails (exits with non-zero status) or times out, the
mutant is categorized as killed. If the build system is successful (exits with zero
status), the mutant is categorized as survived. Finally, a report is generated for
each source file, and an overall report is generated for the project (see Figure 3
for an example of this).

Input : Mutated Java source files
Output: Mutation Testing Report

if executeTestSuite() is successful then
foreach srcFile do

queue ← mutants[srcFile];
backup(srcFile);
while queue 6= ∅ do

mutantFile ← queue.pop();
replace(srcFile,mutantFile);
result[mutantFile] ← executeTestSuite();

end
restore(srcFile);
Generate report for srcFile;

end
Generate overall report;

end
return reports;

Algorithm 2: Test Execution Phase

3.2 Components

The data flow diagram of the main internal components of LittleDarwin is shown
in Figure 1. The following is an explanation of each main component:

JavaRead. This component provides methods to perform input/output op-
erations on Java files. LittleDarwin uses this component to read the source files,
and write the mutants back to disk.

JavaParse. This component parses Java files into an abstract syntax tree.
This is necessary to produce valid and compilable mutants. To implement this
functionality, an Antlr42 Java 8 grammar is used along with a customized version
of Antlr4 runtime. Beside providing the parser, this component also provides the
functionality to pretty print the modified tree back to a Java file.

JavaMutate. This component manipulates the abstract syntax tree (AST)
created by the parser. Subsection 3.3 explains the mutation operators of Lit-
tleDarwin in detail. The currently implemented mutation operators search the

2 http://www.antlr.org/

208

www.manaraa.com

LittleDarwin

JavaRead JavaParse JavaMutate Report
Generator

Antlr4 RuntimeGenerated
 Java Parser

Fig. 1. Data Flow Diagram for LittleDarwin Components

provided AST for mutable nodes matching the predefined patterns (for exam-
ple, AOR-B looks for all binary arithmetic operator nodes that do not contain
a string as an operand), and they perform the mutation on the tree itself. This
gives the developer flexibility in creating new complicated mutation operators.
Even if a mutation operator introduces a fault that needs to change several
statements at once, and depends on the context of the statements, it can be
implemented using a complicated search pattern on the AST. The mutation op-
erators are designed to exclude mutations that would lead to compilation errors.
However, not all of these cases can be detected using an AST (e.g. AOR-B on
two variables that contain strings). Handling of such cases are therefore left for
the post-processing unit that filters such mutants based on the output of the
Java compiler. In order to preserve the maximum amount of information for
post-processing purposes, for each mutant a commented header is created. This
header contains the following information: (i) the mutation operator that cre-
ated the mutant, (ii) the mutated statement before and after the mutation, (iii)
the line number of the mutated statement in the original source file, and (iv) the
id number of the mutated node(s). An example is shown in Figure 2.

Fig. 2. The Header of a LittleDarwin Mutant

Report Generator. This component generates HTML reports for each file.
These reports contain all the generated mutants and the output of the build sys-
tem after the execution of each mutant. In the end, an overall report is generated
for the whole project (Figure 3).

209

www.manaraa.com

Fig. 3. LittleDarwin Project Report

3.3 Mutation Operators of LittleDarwin

There are 9 default mutation operators implemented in LittleDarwin listed in
Table 1. These operators are based on the reduced-set of mutation operators that
were demonstrated by Offutt et al. to be capable of creating similar-strength test
suites as the full set of mutation operators [29]. Since the number of mutation
operators of LittleDarwin is limited, it is possible that no mutants are gener-
ated for a class that lacks mutable statements. In practice, we observed that
usually only very small compilation units (e.g. interfaces, and abstract classes)
are subject to this condition.

Table 1. LittleDarwin Mutation Operators

Operator Description
Example

Before After

AOR-B Replaces a binary arithmetic operator a + b a− b

AOR-S Replaces a shortcut arithmetic operator + + a −− a

AOR-U Replaces a unary arithmetic operator −a +a

LOR Replaces a logical operator a& b a | b
SOR Replaces a shift operator a >> b a << b

ROR Replaces a relational operator a >= b a < b

COR Replaces a binary conditional operator a && b a || b
COD Removes a unary conditional operator ! a a

SAOR Replaces a shortcut assignment operator a ∗ = b a / = b

210

www.manaraa.com

In addition to these mutation operators, there are four experimental muta-
tion operators in LittleDarwin that are designed to simulate null type faults.
These mutation operators along with the faults they simulate are provided in
Table 2. We included these mutation operators based on the conclusions offered
by Osman et al. [33]. In their study, they discover that the null object is a major
source of software faults. The null type mutation operators are able to simulate
such faults, and consequently assess the quality of the test suite with respect
to them. These mutation operators cover fault-prone aspects of a method: Nul-
lifyInputVariable mutates the method input, NullifyReturnValue mutates the
method output, and NullifyObjectInitialization and RemoveNullCheck mutate
the statements in method body.

Table 2. Null Type Faults and Their Corresponding Mutation Operators

Fault Mutation Operator Description

Null is returned
by a method

NullifyReturnValue
If a method returns an object,

it is replaced by null

Null is provided
as input to a method

NullifyInputVariable
If a method receives an object

reference, it is replaced by null

Null is used to
initialize a variable

NullifyObjectInitialization
Wherever there is a new statement,

it is replaced with null

A null check
is missing

RemoveNullCheck
Any binary relational statement

containing null at one side is negated

3.4 Design Characteristics

To foster mutation testing in industrial setting it is important to have a tool
able to work on large and complex systems. Moreover, to allow researchers to
use real-life projects as the subjects of their studies, it is also important to
provide a framework that is easy to extend. In this section, we show to what
extent LittleDarwin, and its main alternatives, can satisfy these requirements. As
alternatives, we use PITest [7], Javalanche [41], and MuJava [27], since they are
popular tools used in literature. In Table 3, we summarize the design highlights.

Compatibility with Major Build Systems. To make the initial setup
of a mutation testing tool easier, it needs to work with popular build systems
for Java programs. LittleDarwin executes the build system rather than integrate
into it, and therefore, can readily support various build systems. In fact, the
only restrictions imposed by LittleDarwin are: (i) the build system must be able
to run the test suite, and (ii) the build system must return non-zero if any tests
fail, and zero if it succeeds. PITest address the challenge via integration into the
popular build systems by means of plugins. At the time of writing it supports

211

www.manaraa.com

Table 3. Comparison of Features in Mutation Testing Tools

Features LittleDarwin PITest [1] Javalanche [41] MuJava [26]

Compatibility with

Maven X X × ×
Ant X X × ×
Gradle X X × ×
Others X × × ×

Support for Complex Test Structures X × × ×
Optimized for Performance × X X X
Optimized for Experimentation X × × ×
Tested on Large Systems X X X ×
Ability to Retain Detailed Results X × × X
Open Source X X X X

Maven3, Ant4, and Gradle5. Javalanche and MuJava do not integrate in the
build system.

Support for Complex Test Structures. One of the difficulties of per-
forming mutation testing on complex Java systems is to find and execute the
test suite correctly. The great variety of testing strategies and unit test designs
generally causes problems in executing the test suite correctly. LittleDarwin
overcomes this problem thanks to a loose coupling with the test infrastructure,
instead relying on the build system to execute the test suite. Other mutation
testing tools reported in Table 3 have problems in this regard.

Optimized for Performance. LittleDarwin mutates the source code and
performs the execution of the test suite using the build system. This introduces
a performance overhead for the analysis. For each mutant injected, LittleDarwin
demands a rebuild and test cycle on the build system. The rest of the mutation
tools use byte code mutation, which leads to better performance.

Optimized for Experimentation. LittleDarwin is written in Python to
allow fast prototyping [40]. To parse the Java language, LittleDarwin uses an
Antlr4 parser. This allows us to rapidly adapt to the syntactical changes in newer
versions of Java (such as Java 8). This parser produces a complete abstract syn-
tax tree that makes the implementation of experimental features easier. In addi-
tion, the modular and multi-phase design of the tool allows reuse of each module
independently. Therefore, it becomes easier to customize the tool according to
the requirements of a new experiment. The other mutation tools work on byte
code, and therefore do not offer such facilities.

Tested on Large Systems. LittleDarwin has been used in the past on
software systems with more than 82 KLOC [37,38]. PITest and Javalanche have
been used in experiments with softwares of comparable size [39,41]. We did not
find evidence that MuJava has been tested on large systems.

Ability to Retain Detailed Results. PITest and Javalanche only output
a report on the killed and survived mutants. However, in many cases this is not

3 https://maven.apache.org/
4 https://ant.apache.org/
5 https://gradle.org/

212

www.manaraa.com

enough. For example, subsumption analysis requires the name of all the tests
that kill a certain mutant. To address this problem, LittleDarwin retains all
the output provided by the build system for each mutant, and allows for post-
processing of the results. This also allows the researchers to manually verify
the correctness of the results. MuJava provides an analysis framework as well,
allowing for further experimentation [27].

Open Source. LittleDarwin is a free and open source software system. The
code of LittleDarwin and its components are provided6 for public use under
the terms of GNU General Public License version 2. PITest and MuJava are re-
leased under Apache License version 2. Javalanche is released into public domain
without an accompanying license.

3.5 Experimental Features

In order to facilitate the means for research in mutation testing, LittleDarwin
supports several features up to date with the state of the art. A summary of these
features and their availability in the alternative tools is provided in Table 4. An
explanation of each feature follows.

Table 4. Comparison of Experimental Features in Mutation Testing Tools

Experimental Features LittleDarwin PITest Javalanche MuJava

Higher-Order Mutation X × × ×
Mutant Sampling X × × X
Subsumption Analysis X × × ×
Manual Mutation X × × ×

Higher-order Mutation. This feature is designed to combine two first-
order mutants into a higher-order mutant. It is possible to link the higher-order
mutants to their first-order counterparts after acquiring the results.

Mutant Sampling. This feature is designed to use the results for sampling
experiments. LittleDarwin by default implements two sampling strategies: uni-
form, and weighted. The uniform approach selects the mutants randomly with
the same chance of selection for all mutants. In the weighted approach, a weight
is assigned to each mutant that is proportional to the size of the class containing
the mutant. The given infrastructure also allows for the development of other
techniques.

Subsumption Analysis. This feature is designed to determine the sub-
sumption relationship between mutants. For each mutant, this feature can de-
termine whether the mutant is subsuming or not, which tests kill the mutant,
which mutants are subsuming the mutant, and which mutants are subsumed
by the mutant. It is also capable of exporting the mutant subsumption graph
proposed by Kurtz et al. for each project [22,23].

6 https://github.com/aliparsai/LittleDarwin

213

www.manaraa.com

Manual Mutation. This feature allows the researcher to use their manu-
ally created mutants with LittleDarwin. LittleDarwin is capable of automatically
matching the mutants with the corresponding source files, and creating the re-
quired structure to perform the analysis. For example, this is useful in case the
mutants are created with a separate tool.

4 Experiments

In this section, we provide a brief summary of the experiments we already per-
formed using the experimental features of LittleDarwin on large and complex
systems.

Mutation Testing of a Large and Complex Software System. We
used LittleDarwin to analyze a large and complex safety critical system for Agfa
HealthCare. Our attempts to use other mutation testing tools failed due to the
complex testing structure of the target system. Due to this complexity, these
tools were not able to detect the test suite. This is because (i) the project used
OSGI7 headers to dynamically load modules, and (ii) the test suite was located
in a different component, and required several frameworks to work. The loose
coupling of LittleDarwin with the testing structure allowed us to use the build
system to execute the test suite, and thus, successfully perform mutation testing
on the project. For more details on this experiment, including the specification
of the target system, and the run time of the experiment, please refer to Parsai’s
master’s thesis [36].

Experimenting Up to Date Techniques on Real-Life Projects. Lit-
tleDarwin was used to perform three separate studies using the up to date tech-
niques reported in Table 4. We were able to perform these studies on real-life
projects.

In our study on random mutant sampling, we noticed that related litera-
ture have two shortcomings [37]. They focus their analysis at project level and
they are mainly based on toy projects with adequate test suites. Therefore, we
evaluated random mutant sampling at class level, and on real-life projects with
non-adequate test suites. We used LittleDarwin to study two sampling strategies:
uniform, and weighted. We highlighted that the weighted approach increases the
chance of inclusion of mutants from classes with a small set of mutants in the
sampled set, and reduces the viable sampling rate from 65% to 47% on average.
This analysis was performed on 12 real-life open source projects.

In our study on higher-order mutation testing, we used LittleDarwin to per-
form our experiments [38]. We proposed a model to estimate the first-order
mutation coverage from higher-order mutation coverage. Based on this, we pro-
posed a way to halve the computational cost of acquiring mutation coverage.
In doing so, we achieved a strong correlation between the estimated and actual
values. Since LittleDarwin retains the information necessary for post-processing
the results, we were able to analyze the relationship between each higher-order
mutant and its corresponding first-order mutants.

7 https://www.osgi.org/developer/specifications/

214

www.manaraa.com

We performed a study on simulating the null type faults which is currently
under peer-review. In this study, we show that mutation testing tools are not
adequate to strengthen the test suite against null type faults in practice. This is
mainly because the traditional mutation operators of current mutation testing
tools do not model null type faults. We implemented four new mutation operators
in LittleDarwin to model null type faults explicitly, and we show how these
mutation operators can be operatively used to extend the test suite in order to
prevent null type faults. Using LittleDarwin, we were able to analyze the test
suites of 15 real-life open source projects, and describe the trade offs related to
the adoption of these operators to strengthen the test suite. We also used the
mutant subsumption feature of LittleDarwin to perform redundancy analysis on
all 15 projects.

Pilot Experiment. We performed a pilot experiment on a real life project in
order to compare LittleDarwin with two of its alternatives: PITest and Javalanche.
In this experiment, we used Jaxen8 as the subject, since it has been used before
to evaluate Javalanche by its authors [42]. Jaxen has 12,438 lines of produc-
tion code, and 7,539 lines of test code. Table 5 shows the results of our pilot
experiment. As we can see, even though LittleDarwin creates the least number
of mutants, it is still slowest per-mutant. This is mainly because PITest and
Javalanche both filter the mutants prior to analysis based on statement cover-
age. In addition, LittleDarwin relies on the build system to run the test suite,
which introduces per-mutant overhead.

Table 5. Pilot Experiment Results

Tool Generated Mutants Killed Mutants Mutation Coverage Analysis Time Per-mutant Time

LittleDarwin 1,390 805 57.9% 2h23m45s 6.21s

PITest 4,315 2,145 49.8% 1h13m13s 1.02s

Javalanche 9,285 4,442 47.8% 1h35m23s 0.62s

5 Conclusion

We presented LittleDarwin, a mutation testing framework for Java. On the one
hand, it can cope with large and complex software systems. This lets LittleDar-
win foster the adoption of mutation testing in industry. On the other hand, the
tool is written in Python and released as an open source framework, namely
it enables fast prototyping, and the addition of new experimental components.
From this point of view, LittleDarwin shows its keen interest in representing an
easy to extend framework for researchers on mutation testing. Combining these
aspects allows researchers to use real-life projects as the subjects of their studies.

In the current version, LittleDarwin is compatible with major build systems,
supports complex test structures, can work with large systems, and retains lots

8 http://jaxen.org/

215

www.manaraa.com

of useful information for further analysis of the results. Moreover, it already in-
cludes the following experimental features: higher-order mutation, mutant sam-
pling, mutant subsumption analysis, and manual mutation. Using these features,
we have already performed four studies on real-life projects that would otherwise
not have been feasible.

Acknowledgments This work is sponsored by the Institute for the Promotion
of Innovation through Science and Technology in Flanders through a project
entitled Change-centric Quality Assurance (CHAQ) with number 120028.

References

1. Pitest, http://pitest.org/
2. Acree Jr., A.T.: On Mutation. Ph.D. thesis, Georgia Institute of Technology, At-

lanta, GA, USA (1980)
3. Ammann, P., Delamaro, M.E., Offutt, J.: Establishing theoretical minimal sets of

mutants. In: 2014 IEEE Seventh International Conference on Software Testing,
Verification and Validation. pp. 21–30 (March 2014)

4. Andrews, J.H., Briand, L.C., Labiche, Y.: Is mutation an appropriate tool for test-
ing experiments? In: Proc. ICSE 2005 (27th international conference on software
engineering). pp. 402–411. ICSE ’05, ACM, New York, NY, USA (2005)

5. Beck, K.: Test-driven Development: By Example. Kent Beck signature book,
Addison-Wesley (2003)

6. Budd, T.A.: Mutation Analysis of Program Test Data. Ph.D. thesis, Yale Univer-
sity, New Haven, CT, USA (1980), aAI8025191

7. Coles, H., Laurent, T., Henard, C., Papadakis, M., Ventresque, A.: Pit: A practical
mutation testing tool for java (demo). In: Proc. ISSTA 2016 (the 25th International
Symposium on Software Testing and Analysis). pp. 449–452. ISSTA 2016, ACM,
New York, NY, USA (2016)

8. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: Help for
the practicing programmer. Computer 11(4), 34–41 (apr 1978)

9. Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters 27(8),
861–874 (jun 2006), rOC Analysis in Pattern Recognition

10. Fowler, M., Foemmel, M.: Continuous integration. Tech. rep., Thoughtworks (2006)
11. Frankl, P.G., Weiss, S.N., Hu, C.: All-uses vs mutation testing: An experimental

comparison of effectiveness. Journal of Systems and Software 38(3), 235–253 (sep
1997)

12. Gligoric, M., Zhang, L., Pereira, C., Pokam, G.: Selective mutation testing for
concurrent code. In: Proc. ISSTA 2013 (Proceedings of the 2013 International
Symposium on Software Testing and Analysis). pp. 224–234. ISSTA 2013, ACM,
New York, NY, USA (2013)

13. Gopinath, R., Alipour, A., Ahmed, I., Jensen, C., Groce, A., et al.: An empirical
comparison of mutant selection approaches. Tech. rep., Oregon State University
(2015)

14. Jia, Y., Harman, M.: Constructing subtle faults using higher order mutation test-
ing. In: Proc. SCAM 2008 (Eighth IEEE International Working Conference on
Source Code Analysis and Manipulation). pp. 249–258. Institute of Electrical &
Electronics Engineers (IEEE) (sep 2008)

216

www.manaraa.com

15. Jia, Y., Harman, M.: Higher order mutation testing. Information and Software
Technology 51(10), 1379–1393 (2009), source Code Analysis and Manipulation,
{SCAM} 2008

16. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Transactions on Software Engineering 37(5), 649–678 (sep 2011)

17. Just, R., Jalali, D., Inozemtseva, L., Ernst, M.D., Holmes, R., Fraser, G.: Are
mutants a valid substitute for real faults in software testing? In: Proc. FSE 2014
(Proceedings of the 22nd ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering). pp. 654–665. FSE 2014, ACM, New York, NY, USA
(2014)

18. Kim, S., Clark, J.A., McDermid, J.A.: Class mutation: Mutation testing for object-
oriented programs. In: Proc. Net Object Days 2000. pp. 9–12 (2000)

19. King, K.N., Offutt, A.J.: A fortran language system for mutation-based software
testing. Software: Practice and Experience 21(7), 685–718 (jul 1991)

20. Kintis, M., Papadakis, M., Malevris, N.: Isolating first order equivalent mutants
via second order mutation. In: Proc. ICST 2012 (Proceedings of the 2012 IEEE
Fifth International Conference on Software Testing, Verification and Validation).
pp. 701–710. Institute of Electrical & Electronics Engineers (IEEE) (apr 2012)

21. Kuhn, D.R.: Fault classes and error detection capability of specification-based test-
ing. ACM Trans. Softw. Eng. Methodol. 8(4), 411–424 (Oct 1999)

22. Kurtz, B., Ammann, P., Delamaro, M.E., Offutt, J., Deng, L.: Mutant subsumption
graphs. In: Software Testing, Verification and Validation Workshops (ICSTW),
2014 IEEE Seventh International Conference on. pp. 176–185 (March 2014)

23. Kurtz, B., Ammann, P., Offutt, J.: Static analysis of mutant subsumption. In:
Software Testing, Verification and Validation Workshops (ICSTW), 2015 IEEE
Eighth International Conference on. pp. 1–10 (April 2015)

24. Kurtz, B.: On the utility of dominator mutants for mutation testing. In: Proc.
FSE 2016 (2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering). pp. 1088–1090. FSE 2016, Association for Computing
Machinery (ACM), New York, NY, USA (2016)

25. Ma, Y.S., Kwon, Y.R., Offutt, J.: Inter-class mutation operators for java. In: Proc.
ISSRE 2002 (13th International Symposium on Software Reliability Engineering).
pp. 352–363. Institute of Electrical & Electronics Engineers (IEEE) (2002)

26. Ma, Y.S., Offutt, J., Kwon, Y.R.: MuJava: an automated class mutation system.
Software Testing, Verification and Reliability 15(2), 97–133 (Jun 2005)

27. Ma, Y.S., Offutt, J., Kwon, Y.R.: MuJava: a mutation system for java. In: Proc.
ICSE 2006 (28th international conference on software engineering). pp. 827–830.
ICSE ’06, ACM, New York, NY, USA (2006)

28. McGregor, J.D.: Test early, test often. Journal of Object Technology 6(4), 7–14
(May 2007), (column)

29. Offutt, A.J., Lee, A., Rothermel, G., Untch, R.H., Zapf, C.: An experimental de-
termination of sufficient mutant operators. ACM Transactions on Software Engi-
neering Methodology 5(2), 99–118 (Apr 1996)

30. Offutt, A.J., Pan, J.: Automatically detecting equivalent mutants and infeasible
paths. Software Testing, Verification and Reliability 7(3), 165–192 (sep 1997)

31. Offutt, A.J., Untch, R.H.: Mutation 2000: Uniting the orthogonal. In: Wong, W.
(ed.) Mutation Testing for the New Century, The Springer International Series on
Advances in Database Systems, vol. 24, pp. 34–44. Springer US (2001)

32. Omar, E., Ghosh, S., Whitley, D.: HOMAJ: A tool for higher order mutation
testing in AspectJ and Java. In: Proc. ICSTW 2014 (IEEE Eighth International

217

www.manaraa.com

Conference on Software Testing, Verification and Validation Workshops, 2014). pp.
165–170. ICSTW ’14, IEEE Computer Society, Washington, DC, USA (2014)

33. Osman, H., Lungu, M., Nierstrasz, O.: Mining frequent bug-fix code changes. In:
Proc. CSMR-WCRE 2014 (2014 Software Evolution Week - IEEE Conference on
Software Maintenance, Reengineering, and Reverse Engineering). pp. 343–347. In-
stitute of Electrical and Electronics Engineers (IEEE) (Feb 2014)

34. Papadakis, M., Henard, C., Harman, M., Jia, Y., Le Traon, Y.: Threats to the va-
lidity of mutation-based test assessment. In: Proceedings of the 25th International
Symposium on Software Testing and Analysis. pp. 354–365. ISSTA 2016, ACM,
New York, NY, USA (2016)

35. Papadakis, M., Malevris, N.: An empirical evaluation of the first and second order
mutation testing strategies. In: Proc. ICSTW 2010 (Proceedings of the 2010 Third
International Conference on Software Testing, Verification, and Validation Work-
shops). pp. 90–99. ICSTW ’10, IEEE Computer Society, Washington, DC, USA
(apr 2010)

36. Parsai, A.: Mutation Analysis: An Industrial Experiment. Master’s thesis, Univer-
sity of Antwerp (2015)

37. Parsai, A., Murgia, A., Demeyer, S.: Evaluating random mutant selection at class-
level in projects with non-adequate test suites. In: Proc. EASE 2016 (20th Inter-
national Conference on Evaluation and Assessment in Software Engineering). pp.
11:1–11:10. EASE ’16, ACM, New York, NY, USA (2016)

38. Parsai, A., Murgia, A., Demeyer, S.: A model to estimate first-order mutation
coverage from higher-order mutation coverage. In: Proc. QRS 2016 (IEEE Inter-
national Conference on Software Quality, Reliability and Security). pp. 365–373.
Institute of Electrical and Electronics Engineers (IEEE) (Aug 2016)

39. Parsai, A., Soetens, Q.D., Murgia, A., Demeyer, S.: Considering polymorphism
in change-based test suite reduction. In: Dingsøyr, T., Moe, N.B., Tonelli, R.,
Counsell, S., Gencel, C., Petersen, K. (eds.) Lecture Notes in Business Information
Processing, pp. 166–181. Springer International Publishing, Cham (2014)

40. Prechelt, L.: An empirical comparison of seven programming languages. Computer
33(10), 23–29 (Oct 2000)

41. Schuler, D., Zeller, A.: Javalanche: efficient mutation testing for java. In: Proc.
ESEC/FSE 2009 (7th Joint Meeting of the European Software Engineering Con-
ference and the ACM SIGSOFT Symposium on The Foundations of Software En-
gineering). pp. 297–298. ESEC/FSE ’09, ACM, New York, NY, USA (2009)

42. Schuler, D., Zeller, A.: (un-)covering equivalent mutants. In: Proc. ICST 2010
(Third International Conference on Software Testing, Verification and Validation,
2010). pp. 45–54. ICST ’10, Saarland Univ., Saarbrucken, Germany, IEEE Com-
puter Society, Washington, DC, USA (2010)

43. Walsh, P.J.: A Measure of Test Case Completeness. Ph.D. thesis, State University
of New York at Binghamton, Binghamton, NY, USA (1985)

44. Zhang, L., Gligoric, M., Marinov, D., Khurshid, S.: Operator-based and random
mutant selection: Better together. In: Proc. ASE 2013 (28th IEEE/ACM Interna-
tional Conference on Automated Software Engineering). pp. 92–102. Institute of
Electrical & Electronics Engineers (IEEE) (nov 2013)

218

www.manaraa.com

Automatic Transition System Model
Identifications for Network Applications from

Packet Traces

Zeynab Sabahi-Kaviani, Fatemeh Ghassemi, and Fateme Bajelan

School of Electrical and Computer Engineering,
University of Tehran, Tehran, Iran

z.sabahi@ut.ac.ir, fghassemi@ut.ac.ir, bajelan.fateme@ut.ac.ir

Abstract. A wide range of network management tasks such as balanc-
ing bandwidth usage, firewalling, anomaly detection and differentiating
traffic pricing, depend on accurate traffic classification. Due to the di-
versity and variability of network applications, port-based and statistical
signature detection approaches become inefficient and hence, behavioral
classification approaches have been considered recently. However, so far,
there is no automated general method to obtain the behavioral mod-
els of applications. In this research, we propose an automatic procedure
to infer a transition system model from generated traffic of an applica-
tion. Our approach is based on passive automata learning theory and
evidence driven state merging technique using the rules of the network
domain. We consider the behavior of well-known network protocols to
generate the model which includes unobserved behaviors and excludes
invalid ones as much as possible. To this aim, we present a new equiv-
alence relation regarding the given protocol behaviors to induce proper
state merging conditions. This idea has led the time complexity order of
the algorithm to be linear rather than exponential. Finally, we apply the
model of some real applications to evaluate the precision and execution
time of our approach.

1 Introduction

The importance of traffic classification for network administration tasks such as
ensuring the security and quality of service of applications in computer networks
has long been acknowledged. The growing number of network applications and
protocols has limited the efficiency of classical methods. In the past, packets
were easily classified by their transport layer ports. As the use of random or non-
standard ports is dramatically increasing, payload inspection [1,2] and statistical
methods [3, 4] are proposed. However, drawbacks of these techniques such as
insufficiency in encrypted traffic and their high computation cost lead to the
emergence of behavioral classifiers. The merit of the behavioral classification is
to use the behavioral pattern of an application instead of the content of packets
or flow statistics. This point makes these classifiers useful for encrypted traffic or
unknown protocols. But, so far, no automated method to obtain the behavioral

219

www.manaraa.com

model of applications is provided which currently requires human inspection.
There are a few studies for automating inference of the behavioral patterns
which are application specific and cannot be widely used, for instance [5] has
been presented for P2P-TV traffic.

To overcome the challenges of traffic classification and behavioral pattern
detection approaches, we aim at providing an automatic approach to derive
formal behavioral models, i.e., transition systems, for applications in the domain
of the network. Our focus is mainly on programs at the application layer of the
TCP/IP model [6]. We reduce our problem to the automata learning problem [7]
which aims at inferring an automaton which accepts the set of given words. If the
input traffic is considered as the given words of the language, then the desired
model will be the identified automaton. However, the classical approaches in the
literature of automata learning are not efficient to derive the most general model
such that not only it subsumes valid unobserved traces as much as possible, but
also disallows invalid traces. This is not achievable unless concepts of the domain
are utilized to tailor the basic algorithm.

Intuitively, we assume that the behavior of an application can be identified
in terms of how it executes well-known network protocols (below the application
layer) Therefore, given the formal specification of well-known network protocols
and execution traces of a program, we automatically generate a transition sys-
tem. Hence, we customize the automata learning algorithm of [8] using rules in
the network context to derive the most general model. Noting to the fact that
each trace of a program is an interleaving of network protocol execution traces,
the inferred model must preserve the behavior of each network protocol. In other
words, the model of various applications differ in how they interleave the traces
of well-known network protocols. Therefore, we take advantage of a behavioral
pre-order relation in the theory of transition systems to conduct the process of
model generation such that invalid traces are prohibited. Due to our abstraction
(of application variables), the states of the inferred model which identify the
same state with the same number of the flows for each network protocol, can be
aggregated together using the counter abstraction technique [9] to include not
observed behaviors.

To illustrate the applicability of our approach, we have implemented our
algorithm in a tool and applied it on two version control system applications
and two remote desktop sharing programs. Our results indicate that the tech-
niques that are used to generalize the model, are sufficiently conservative. and
unobserved behaviors are covered with a high precision. Furthermore, the worst
case time complexity order of our algorithm is linear rather than exponential in
contrast to the related automata learning techniques.

2 Preliminaries

In this section, we describe the necessary network background, an overview of
automata learning, the definitions of the main concepts related to transition
systems and the counter abstraction technique used to find the equivalent states.

220

www.manaraa.com

2.1 Network Background

Each packet transferred across a network is composed of two parts: the header
and the content. The header includes the control information needed by the
corresponded protocol and is appended to the beginning of the content. Protocols
defined over the Internet follow the TCP/IP layered architecture [6]. This model
consists of four layers: Application, Transport, Internet, and Link. The layered
architecture means that the packet content of each layer is the built packet of
its upper layer.

To send a message over the network, at first, the Application layer receives the
user message from the software which is running (e.g., email client, web browser,
instant messaging software, etc.), and passes it to the lower layer. The Transport
layer segments data from the upper levels, then establishes a connection between
the packet’s point of origin and where it has to be received, and ensures that the
packets are reassembled in the correct order [10]. The Network layer is responsi-
ble for the packet’s addressing and routing. Finally, the Link layer manages the
formats of packets based on the mediums being used in transmitting the pack-
ets. For each layer, a number of different protocols is standardized. Protocols
are divided into connection-less and connection-oriented categories. Connection-
oriented are those that need to establish a connection before data transmission.
Thus there are handshake (initialization) and finalization phases in these proto-
cols. These phases are not required in connection-less protocols. They just send
a request packet for each desired data. A sequence of packets which have the
same value for the parameters source IP, source port, destination IP, destination
port, and the protocol name is called flow. An execution of an application gives
rise to initiating a number of flows. These flows are the connections which are
established between the initiator system and the other end systems.

2.2 Automata Learning

There are equivalent keywords in the literature to automata learning such as
grammar inference or regular inference, language or automata identification. The
goal of automata learning is to find a (non-unique) smallest automaton which is
consistent with the set of given examples [11]. Gold has proved that this problem
when the alphabet is finite, the two input sets of positive and negative samples
are given, and the number of the states of the output automaton is determined,
is a NP-complete problem [7]. If all of the words with the size equal and less
than n are given, then it is possible to solve the problem in the polynomial time.
The algorithms of this problem can be divided into the two categories: active
and passive.

The active techniques are based on Angluin L∗ algorithm which solves the
problem in polynomial time by asking some membership or equivalence queries
[12]. It is assumed that there is an oracle than answer the required queries. Pas-
sive techniques tend to build tree-like automata, called prefix tree automata,
from input examples and then by merging their states according to some heuris-
tics evidence, achieve the smallest deterministic finite automata (this technique

221

www.manaraa.com

is called Evidence Driven State Merging (EDSM) [8]). In this category, there is
no oracle and the algorithm should find the solution only from the positive and
negative words of the language.

Since we aim to infer the behavioral model only from the input traces when
there is no oracle system, our solution in this paper is based on the passive
techniques. The most important challenge of these techniques is how to find the
candidate states which should be merged to include unobserved traces. KTail
algorithm merges states which have K common future (i.e., states that accept
the same set of strings of length K) [13]. Several research has been conducted to
decrease the O(n2) search space of the states which should be merged. Red-Blue
is one of them and becomes a popular framework which limits the number of
pairs of states by determining sufficient conditions on their colors.

2.3 Transition Systems

In this section we define the concepts used in the proposed methodology which
are related to transition systems. These definitions have been adapted from [14].

Definition 1 (Transition System). A transition system is a tuple TS =
(S,Act ,→, s0, ↓) where S is a set of states, Act is a set of actions, →⊆ S ×
Act ×S is a transition relation, s0 is the initial state, and ↓⊆ S is a set of final
states. We use s

α−→ t to denote (s, α, t) ∈→.
TS is called action-deterministic if for all s ∈ S, there are not (s, α, t) ∈→

and (s, α, v) ∈→, where α ∈ Act and t, v ∈ S, such that t 6= v.

From this definition, the transition system in the left side of Fig. 1 is action-
deterministic. A finite execution fragment η = s0α0s1α1 . . . αnsn+1 of TS is an
alternating sequence of states and actions starting with the initial state and
ending with a final state such that (si, αi, si+1) ∈→ where 0 ≤ i ≤ n. A finite
sequence of actions % = α0α1 . . . αn of TS is an execution trace if ∃s0, . . . , sn+1 ∈
S such that η = s0α0s1α1 . . . αnsn+1 is an execution fragment. For instance,
s0 x s1 a s2 x s3 a s4 y s5 b s6 y s7 and s0 a s8 a s9 x s10 b s11 y s12

are the execution fragments of the transition system in the left side of Fig. 1.
By eliminating states from these sequences, the execution traces are generated
(x a x a y b y and a a x b y respectively).

There is an abstraction operator which has the responsibility to hide some
actions of a transition system to make them internal and thus unobservable to
external entities. We formally define the abstraction operator in the following
definition:

Definition 2 (Abstraction Operator). Let TS = (S,Act ,→, s0, ↓) be a tran-
sition system. The abstraction of TS via a set of actions L ⊆ Act, denoted by
τL(TS), is (S,Act \ L,→′, s0, ↓) such that: →′= {(s, α, t) | (s, α, t) ∈→, α /∈
L} ∪ {(s, τ, t) | (s, α, t) ∈→, α ∈ L}

To compare the behavior of transition systems, several behavioral pre-order
and equivalence relations have been proposed ranging from strict to liberal ones.

222

www.manaraa.com

The Simulation relation is a finest pre-order relation which requires a transition
system to precisely mimic transitions of another one [15]. In the case of existing
internal actions in the system, the Weak Simulation relation is defined to relax
the conditions only for the observable actions.

Let
τ−→∗ be reflexive and transitive closure of τ -transitions:

– t
τ−→∗ t;

– t
τ−→∗ s and s

τ−→ r, then t
τ−→∗ r.

Definition 3 (Weak Simulation Relation). A binary relation R on the set
of states S is a weak simulation relation if for any s1, s

′
1, and t1 ∈ S and

α ∈ Act, s1 R t1 implies:

– s1
α−→ s′1 ⇒ (α = τ ∧ s′1 R t1) ∨ (∃ t′1, t′′1 , t′′′1 ∈ S : t1

τ−→∗ t′′′1
α−→ t′′1

τ−→∗
t′1 ∧ s′1 R t′1);

– s1 ∈↓⇒ (∃ t′1 ∈↓: t
τ−→∗ t′).

For the given transition systems TS i = (Si,Act i,→i, s0i, ↓i), where i ∈ {1, 2},
TS 1 is weakly simulated by TS 2 or TS 2 simulates TS 1, denoted by TS 1 �w TS 2,
if s01 R s02 for some weak simulation relation R.

A weak simulation relation R is minimal, if for all simulation relation R′
witnessing TS 1 �w TS 2, R ⊆ R′. Hence, a minimal weak simulation relation R
is not necessarily unique.

2.4 Counter Abstraction

The Counter Abstraction is a technique to abstract states of a system. The idea
is to represent each state as a vector of counters one per each value instead of a
vector of state variables. For instance, consider there are three integer variables
x, y and z. The states {x = 1, y = 2, z = 1}, {x = 2, y = 1, z = 1} and
{x = 1, y = 1, z = 2} are equivalent because they have the identical counter
abstracted state {count(1) : 2, count(2) : 1}. This technique has been used in
various applications. In symmetry reduction which is a technique to avoid state
space explosion problem, the counter abstraction has the role of finding identical
clusters of states space so as to reduce the symmetry states and decrease the
cost of model checking [16]. This concept is also used in [9] in order to abstract
a parameterized system of an unbounded size into a finite-state system to be
verifiable.

3 Methodology

In this section, our proposed methodology for learning the network behavioral
model of an application is discussed.

223

www.manaraa.com

3.1 Problem Statement

The captured traffic is the sequence of packets sent or received as the result of the
execution of an application during a specified time. Each packet contains data
and headers of layers as the result of encapsulation. We only consider information
of the upper layer instead of the whole headers and data (for instance, we only
take into account information of the application layer of HTTP packets while
they subsume information of the TCP layer).

To facilitate the processing of each packet content and close up the concept
to the automata theory, a function is exploited which corresponds each packet
to its equivalent action-like abstract representation. This function is defined
as PM apper : Packets → Act where Packets is the set of possible packets
captured through the pre-processing step. For example, a received TCP packet
in the handshake phase is mapped to TCPInitI which is a member of the model
actions set. In Section 4 we explain how the action set is defined in terms of
the packet information. Therefore, by applying the PMapper function to each
captured packet, we obtain a trace of actions. Hence, one input of our problem
is N executions of an application which are transformed by the PMapper into
the N action traces (packet trace) denoted by PT , ranged over by π. Let πi
indicate the ith action of the trace π, and len(π) show the length of the trace.
We remark that the length of each input execution is arbitrary, and in potentially
independent of the length of other traces.

Besides the packet traces, another important input of our problem is the spec-
ifications of K network protocols. We assume that the specifications are provided
in the form of action-deterministic transition systems Pi = (Si,Act i,→i, s0i, ↓i)
where 1 ≤ i ≤ K, τ 6∈ Act i , and ∀i, j ≤ K : (Act i ∩ Actj = ∅). We remark that
each action trace π is the interleaving of a set of flows f1, f2, . . . where fi is an
execution trace of Pj (j ≤ K).

The goal of our problem is to derive a model in the form of transition system,
i.e., M = (SM ,ActM ,→M , s0M , ↓M) such that ActM =

⋃
π∈PT{πi | 1 ≤ i ≤

len(π)}, and π ∈ Traces(M), where Traces(M) is the set of the execution traces
of M . In fact, each of the input traces is an execution trace of the desired
transition system.

3.2 Projection Relation

Initially, a tree-like automaton which consists of all action traces is generated.
Intuitively, each application needs to establish a number of connections with
other systems in order to perform each of its functionality. Each connection
follows a protocol specification. For instance, an execution of the Map application
of Windows 8 contains four flows where two are for the DNS protocol, one
for the TCP and one for the TLS protocols. Hence, each state of the initial
transition system can be considered as a vector of states, each of which identifies
a state of the corresponding protocol. Note that the size of the vector is equal
to the number of flows. To generalize the initial transition system to cover more
behavior, some states are selected to merge together. Hence, the new model

224

www.manaraa.com

accepts extra not observed valid behavior. Merged states are those called project
equivalent. Two states are project equivalent if their vectors (of flow states)
are identical with respect to the counter abstraction technique. For the sake of
efficiency, the resulting transition system is determined.

Before describing the method, we mention some definitions and theorems.
As we explained, each packet from the application execution belongs to a flow.
We assume the total number of the flows of the all input traces is denoted by F .
Furthermore, the auxiliary function Flow : S×Act ×S → Nat, defined over the
initial transition system, maps each packet, specified by the transition with the
corresponding action of the packet, to its flow number such that Flow(s, α, t) ≤
F , where s, t ∈ S and α ∈ Act . From the flow definition each flow has a protocol
attribute. Let function Protocol identify the protocol name of a flow, denoted by
Protocol : Nat→ Nat, such that ∀ f ≤ F : Protocol(f) ≤ K.

Definition 4 (Projection Relation). Let TS i = (Si,Act i,→i, s0i, ↓i), for
i = 1, 2, be transition systems such that TS 1 �w TS 2 witnessed by a minimal
weak simulation relation R. Two states s1 and s2 of S1 have projection relation
under TS 2 if ∃ t ∈ S2 : s1 R t ∧ s2 R t. Then, we say that s1 and s2 are the
same projection of t under the transition system TS2, denoted by s1 ∼�TS2 s2.

To define states that are project equivalent, the following lemma identifies
the conditions under which the project relation can act as an equivalence rela-
tion, and consequently can partition states. If a transition system has a tree-like
structure, any of its two states can be connected by a unique simple path.

Lemma 1. Let TS i = (Si,Act i,→i, s0i, ↓i), for i = 1, 2, be transition systems
such that TS 1 is a tree-like transition system and TS 2 is an action-deterministic
transition system without any τ -transition (i.e., τ 6∈ Act2). If TS1 is weakly
simulated by TS 2, witnessed by a minimal weak simulation R, then each state
of S1 relates to only one state of S2 under R:

∀ s ∈ S1,∀ t1, t2 ∈ S2 : s R t1 ∧ s R t2 ⇒ t1 = t2

Theorem 1. Let TS i = (Si,Act i,→i, s0i, ↓i), for i = 1, 2, be transition systems
such that TS 1 is a tree-like transition system and TS 2 is an action-deterministic
transition system without any τ -transition (i.e., τ 6∈ Act2). The projection rela-
tion under the transition system TS 2 over the states of TS 1 is an equivalence
relation.

See [17] for the proof of Lemma 1 and Theorem 1. As a consequence of
Theorem 1, the states of a transition system can be partitioned into equivalance
classes by a projection relation. The equivalence class for projection relation is
defined in the following definition.

Definition 5 (Projection Relation Partitioning). Let TS i = (Si,Act i,→i

, s0i, ↓i), for i = 1, 2, be transition systems such that TS1 is a tree-like transition
system and TS2 is an action-deterministic transition system without any τ -
transition (i.e., τ 6∈ Act2). States of TS 1 are partitioned under the projection

225

www.manaraa.com

relation under TS 2 into the equivalence classes each of which is identified by
the unique state t ∈ S2 such that:[t]TS1∼�TS2

= {s ∈ S1 | s R t} where R is a
minimal weak simulation relation.

s0

s1

s2

s3

s4

s5

s6

s7

x

a

x

a

y

b

y

s8

s9

s10

s11

s12

a

a

x

b

y
t1

t2

t3

a

b

a

v1

v2

x y
P1

P2

s0

s1

s3

s4

s6

s5

s2

x

a

x
y

y

b

a

x

a

a

a

Fig. 1: Left: The initial transition system and the specification of Protocols.
Right: Applying the steps of proposed method on an example.

Running Example. Consider the specifications of two sample protocols in the
right side of Fig. 1, we assume that two input traces x a x a y b y and a a x b y
are given. In the first trace, there are three flows, two are of the protocol P2 and
one of the protocol P1. They are given such that the first x and the last y belongs
to a flow and the second x and the first y are related together. In the second
trace, there are two flows each of which is instantiated from each protocol. It is
assumed that the flows are enumerated by the order of their first packets. We
use this example in the rest of this section.

3.3 Step 1: Building the Initial Transition System

From Section 2, there is an execution fragment for each execution trace. We
generate for each input trace π, its corresponding execution fragment ηπ =
s0π1s

π
1π2 . . . πlen(π)s

π
len(π). Note that the initial state in the fragments of the

all traces are intentionally identical. In the first step, the tree-like transition
system M0 is built from aggregating the execution fragments of the input traces.
Therefore, the initial transition system M0 = (S,Act ,→, s0, ↓) is obtained as
follows:

– S = {sπi | 1 ≤ i ≤ len(π), π ∈ PT} ∪ {s0},
– Act = {πi | 1 ≤ i ≤ len(π), π ∈ PT},

226

www.manaraa.com

– →=
⋃
π∈PT ({(sπk , πk+1, s

π
k+1) | 1 ≤ k ≤ len(π)} ∪ {(s0, π1, s

π
1)}),

– ↓= {sπlen(π) | π ∈ PT}.

The transition system in the left side of Fig. 1 is the result of performing
this step. This initial transition system does not cover new execution traces of
the application which are not given in the input. Therefore, some operations
are needed to generalize the initial transition system and cover more execution
traces. Next steps (step 2 and 3) are the efforts to reach this goal.

3.4 Step 2: Generalizing by Counter Abstraction

The generalization method in this step is addressed in two sub-steps.

1. Finding Equivalent States Intuitively, two states are equivalent under the
flow f , if they belong to the same equivalence class based on the projection rela-
tion under the transition system of the attributed protocol of f , i.e., Protocol(f).
To this aim, we introduce the flow-based abstraction operator, which renames
actions not included in the flow f to τ . By generalizing this intuition, two states
s1 and s2 of transition system M0 are equivalent if and only if they are equivalent
under all flows of the initial transition system M0.

Definition 6 (Flow-based Abstraction Operator). Let TS = (S,Act ,→
, s0, ↓) be a transition system. Then τf̄ (TS) = (S,Act ′,→′, s0, ↓) such that:→′=
{(s, α, t) ∈→ | Flow(s, α, t) = f} ∪ {(s, τ, t) | ∃(s, α, t) ∈→ (Flow(s, α, t) 6= f)}
and Act ′ = Act i where Protocol(f) = i and Pi = (Si,Act i,→i, s0i, ↓i).

We remark that if the abstraction operator is defined under protocol ac-
tions instead of a flow, then the resulting abstracted transition system may not
preserve the protocol behavior due to interleaving of flows. For instance, the
abstraction of the transition system in Fig. 1 under the protocol P2 contains
the sequence of x τ x τ y τ y at its left branch which does not have any weak
simulation relation with P2.

Let count(s, t) denote the number of flows like fi that the state t of the
protocol Pj weakly simulates s in the abstraction of M0 under fi:

count(s, t) = |{fi ≤ F | s ∈ [t]τf̄i (TS(M0))∼�Pj
}| .

We remark that each state s is uniquely simulated by a state t as the result of our
projection relation. The two states s1 and s2 can be aggregated together under
the counter abstraction technique if and only if ∀ j ≤ K, t ∈ Sj : count(s1, t) =
count(s2, t).

The results of applying the counter abstraction on the states of the initial
transition system of the running example are presented in [17].For each state
of obtained model, a vector of count values for all states of the transition sys-
tems of protocols is calculated. To obtain each vector, at first, the projection
relation under abstraction of each flow is computed. After that, the number of

227

www.manaraa.com

flows in each state of protocols is counted. For example, for s0, the vector is
< 5, 0, 0, 5, 0 > which is the value of < c(s, t1), c(s, t2), c(s, t3), c(s, v1), c(s, v2) >
where c is the abbreviation of count. It shows that all the flows are related to
the initial states of the protocols. Because of the transition (s0, x, s1) of flow
f1, the state of s1 is simulated by the state v2 of the protocol P2, and hence,
the counter of flows in the state v1 decreases by one and the counter of flows in
the state v2 increases by one. Hence, the projection relation partitioning for s1

produces < 5, 0, 0, 4, 1 >. After calculating the counters for each state, the set of
equivalent states are achieved: {(s2, s5, s10), (s3, s4), (s6, s11), (s7, s12), (s8, s9)}.

2. Merging Equivalent States After finding the set of equivalent states of
M0, merging process should be done. Let [s] donote the equivalence class of the
state s, i.e., ∀ s′ ∈ S : s′ ∈ [s] ⇔ s′ ≡ s. A merged state inherits the union of
the incoming and outgoing transitions of its origin states. By applying all merge
candidates, the final transition system M1 = (S′,Act ,→′, s′0, ↓′) is obtained,
where S′ = {[s] | ∀ s ∈ S}, →′= {([s], α, [t]) | ∃ s, t ∈ S : (s, α, t) ∈→},
s′0 = [s0], and ↓′= {[s] | ∀ s ∈↓}. Fig. 1 (without the tick transition a on the
state s3) is the final result of performing this step. After this step, the resulting
transition system is action-deterministic. We have proved this fact in the [17].

3.5 Step 3: Generalizing by Completing Transitions

The next generalization idea is completing the transitions set according to the
transition systems of the network protocols. We add self-loops of each protocol
state t ∈ Pi, for some i ≤ K, to the state [s] if count(s, t) > 0. Adding such
transitions does not affect the equivalent classes of M1. Then, after applying this
step, the resulting generalized transition system is Mg = (S′,Act ,→g, s

′
0, ↓′) such

that:

→g=→′ ∪{([s], α, [s]) | ∀j ≤ K, t ∈ Sj ,∀ s ∈ S : count(s, t) > 0∧ (t, α, t) ∈→j}.

After applying this step, the tick transition a on state s3 is added to the Fig. 1.
The time complexity of the algorithm is linear in the size of the input. See [17]
for the psuedocode of the algorithm and a discussion of the time complexity.

4 Evaluation

To evaluate the proposed method, we have implemented our algorithm in Java
and applied it to some applications. Two categories of applications,version con-
trol system and remote desktop sharing, are selected for testing our methodology.
For the first category, two applications TortoiseSVN client of SVN 1and Source
Tree Client of GIT 2 are selected. The traffic of the update command of these

1 https://tortoisesvn.net/
2 https://www.atlassian.com/software/sourcetree

228

www.manaraa.com

applications are gathered as their captured packet traces. Also, we have selected
two remote desktop sharing applications, namely TeamViewer 3 and JoinMe 4,
for which their traffic is encrypted. Hence, they cannot be easily identified by
signature based approaches on the content of packets. Each one has run for 100
times and their network traces are captured via the Wireshark 5 tool. Packets
of the application layer protocols (used by these programs), namely TCP, SSL,
SSLv2, TLSv1, TLSv1.2, HTTP and UDP have been considered and the oth-
ers are filtered. The more protocols are considered, the more precision will be
achieved. Some preprocessing operations have been performed to eliminate the
repetitive and truncated packets. Also, we have reassembled segments of frag-
mented packets. The mapper function which is responsible for translating the
packets to their corresponding actions is defined such that it assigns the con-
catenation of the packet protocol name, the control phase and the direction to
each packets. We divide the operation of each protocol into a set of phases to
abstractly consider its progress. The control phases are assumed to be Init, Data,
and Fin for connection-oriented protocols and Init and Data for connection-less
ones. Intuitively, Init indicates to the establishment of the connection, Data to
the transmission of data, and Fin to the termination of the connection. The
direction is a binary tag which can be either I or O to indicate that the packet
is sent or received, respectively. The amount of detail about packets embedded
in their corresponded actions, shows how much the final generated model is sen-
sitive to packet variations. By this mapper function, different manners of each
control phase (initialization/ transferring data/ finalization) are considered to
be the same.

We assume that the specifications of protocols are given in the form of tran-
sition systems and defined according to the mapper function abstraction level.
By applying the mapper function on the packet traces, 100 action traces have
been obtained for each application. These traces are divided into the train and
test sets. The train traces are the input of our proposed method to infer the
behavioral model which should accept the test traces. The overall scheme of an
obtained model is shown in [17].We use the cross validation technique for 100
times to calculate the average value of precision with a reasonable confidence
interval. Table 1 shows the final result of our experiments. Regarding to im-
possibility of measuring the real value of false positive rate (because it is not
possible to gather all negative traces), researchers tend to consider the traces of
the other applications which have the same functionality. Thus, we use traces of
applications in the same category crossly to calculate the false positive rates.

The major point is that by applying our proposed generalization steps, the
false positive rate does not grow. This means that our conservative approach
prevents over-generalization from occurring. Each generalization step improves
the completeness of the model. Note that since the update command of SVN
and GIT generates a short packet trace, their captured traffic are similar and

3 https://www.teamviewer.com/en/
4 https://www.join.me/
5 https://www.wireshark.org/

229

www.manaraa.com

Table 1: The average result of applying the proposed approach step by step, run
on system with CPU Corei7 and 2G RAM. TPR stands for true positive rate.

Step App
States

FP
TPR TPR Train Test

Num (observed) (unobserved) time time

Initial SVN 3982 100% 100% 2 %

< 5sec < 1sec
Transition GIT 4115 100% 100% 1 %

System TeamViewer 8637 0 100% 0%
JoinMe 34484 0 100% 0%

Applying SVN 78 100% 100% 55 %

< 2min < 1sec
Counter GIT 45 100% 100% 100%

Abstraction TeamViewer 407 0 100% 36%
JoinMe 5458 0 100% 25 %

Completing SVN 78 100% 100% 100%

< 5min < 1sec
Self-Loop GIT 45 100% 100% 100%

Transitions TeamViewer 407 0 100% 98 %
JoinMe 5458 0 100% 56 %

Relaxing SVN * 100% 100% 100%

* *
Unnecessary GIT * 100% 100% 100%

Orders* TeamViewer * 0 100% 100 %
JoinMe * 0 100% 91 %

misclassified. As a future work, we plan to map packets to parametric actions in
order to enhance the precision of the classifier. Adding (self-loop) transitions has
increased our precision by 31 percent in the worst case. In the next step, we aim
to relax unnecessary interleaving which stems from the concurrent development
of applications or parallel network connections. Such a step which is our future
work increases our precision to 100 or 91 percent. Now, we have applied the
step manually, by examining the counter examples of the previous step. Those
traces which can be covered by the generated model via modifying the orders of
packets, is counted as the successful result for this step. We plan to automate this
idea so as to automatically induce strict orders among transitions and relax the
unnecessary ones in our future work. Our approach fails to recognize 9 percent
of test traces (the last row of the Table 1) which are mainly those that include
new unpredictable subsequences based on the train set.

4.1 Comparison with other packet classification methods.

To clarify the applicability of our methods, it should be compared with other
packet classification techniques which we have described in Section 1. Port-
based detection method does not have the ability of detecting most of the cur-
rent applications because that they tend to use random or non-standard ports.
Due to growing usage of encrypted traffic payload inspection methods be-
come useless and it can not be used in our dataset. Furthermore, the proposed
behavioral classification methods are application specific (e.x. for P2P appli-
cations) and they are not enough general to apply to our selected applications.

230

www.manaraa.com

Finally statistical classification methods are the only related work which
we can compare our work with. To this aim, Netmate 6 is used to obtain the
feature vectors of flows of captured traffic. Then, using Weka tool-set7, the aver-
age precision of classification and false positive metrics among three algorithms
SVM, Native Bayes and C4.5 were measured. The final result of these metrics
are reported in Table 2.

Table 2: The result of statistical classification
Method FP TPR Train Time Test Time

TeamViewer 0.12 % 83 % 3 sec < 1 sec

JoinMe 0.10 % 87 % 5 sec < 1 sec

5 Related Work

Two research areas are related to our problem. In the following we explore related
work in each area.
Automata Learning. Some research has been conducted to extend the expres-
siveness of inferred models. The KTail algorithm is extended in [18] with the aim
to generate models from methods invocation traces. This approach is conducted
in four steps. At first, the traces with the identical sequence of methods (those
differ in the values of parameters) are merged together. Next, constraints on
parameters are obtained via Daikon invariant detector [19]. At the third step, a
prefix tree automaton is built. Finally, the states are merged according to a cri-
terion which can be equivalence of method and parameters, weak subsumption
or strong subsumption for their next k actions. In [20], the authors extends the
Angluin L∗ algorithm to infer relationships between input and output parame-
ters in the form of the Mealy machines. In [21], the automate learning problem
is extended to infer deterministic timed automata.

Some studies address the application of automata learning problem. Among
them, [22] is the most related work to ours which elaborates on inferring mealy
machine models of communication protocols. The authors indicate that the pa-
rameters in the message format of protocols such as sequence number, config-
uration parameter and session id, result in infinite-states model. To minimize
the state space, the abstract representation of protocol states are derived auto-
matically in terms of operations that a requester and responder may perform.
Hence, they have a similar assumption to ours which is the existence of protocol
specifications. Their algorithm is based on query evaluation (active automata
learning), while, we have extended the passive automata learning. Also, there
are other applications of automata learning in different areas, especially in soft-
ware specification mining [23,24] which are not directly related to our work and
we do not elaborate on.

Reverse Engineering of Protocol Specification. In this part we enumer-
ate the works that focus on inferring protocol specifications from traffic. These
works are related to ours because of their restriction on inferring a model by

6 https://dan.arndt.ca/projects/netmate-flowcalc/
7 http://www.cs.waikato.ac.nz/ml/weka/

231

www.manaraa.com

observing the behavior of the application in a black-box style. In [25], a proba-
bilistic method was investigated to obtain a finite state machine of a protocol. It
was assumed that the format of protocol messages is not determined. At the first
step, messages are segmented into l-length bytes and clustered with the aim of
recognizing their control parts. Next, the most frequent patterns are selected as
message units by statistical analysis. Then, the main messages of the protocols
are defined by computing the centers of the clusters. Finally, the finite state
machine is constructed whose states are the main messages and probabilistic
transitions are the frequencies of each pairs of messages.

In ReverX algorithm [26], a prefix tree automaton is built from traces and
then the states which are the destination of identical transitions, are merged.
Therefore, transitions with the same source and destination are created. They
claim that if these transitions are merged the parameters of message headers are
induced. Actually, despite their work is similar to us in using passive automata
learning, we differ in the conditions for state merging. If the states are just
similar in their 1-future action, they merge them, while we have investigated a
domain specific condition based on well-known protocol.

6 Conclusion

The classical methods which identify the traffic based on packet header informa-
tion or statistical metrics, are not effective anymore. Classification approaches
based on the behavioral patterns of applications are of a new trend to this
problem. No general and automated method to derive behavioral models has
been provided. We proposed a method to reach this goal based on the automata
identification problem and evidence driven state merging technique combined
by transition system theories. Intuitively, we assumed that the behavior of an
application can be identified in terms of how it executes well-known network
protocols, abstracting the state variables of the application. Hence, we have in-
troduced our merging conditions to identify the equivalent states based on the
specification of a set of well-known network protocols such as TCP, TLS, SSL,
etc. To this aim, we have provided the projection relation to identify the states
with the same number of the flows for each network protocol which can be
counted together using the counter abstraction technique.

We have presented two extra steps to complete the inferred model to cover
unobserved behaviors At first, the model is completed by including the self-loop
behaviors of the network protocols. After that, the possible valid interleaving of
the packets based on the repetition of their orders is predicted. The model is
extended to subsume such predicted orders. We also implemented and evaluated
our procedure which does not require human inspection. The experiments show
very encouraging results that the generalization steps significantly increase the
accuracy from 0% to 91% in the worst case. The future work is to mechanize
the last step which induces the essential orders with the aim of relaxing the
unnecessary ones. We plan to extend our case study and compare the result of
our method with the real traffic classification tools.

232

www.manaraa.com

References

1. A. Moore and K. Papagiannaki, “Toward the accurate identification of network
applications,” in Passive and Active Network Measurement. Springer, 2005, pp.
41–54.

2. S. Sen, O. Spatscheck, and D. Wang, “Accurate, scalable in-network identification
of p2p traffic using application signatures,” in Proc. 13th WWW. ACM, 2004,
pp. 512–521.

3. A. Moore and D. Zuev, “Internet traffic classification using bayesian analysis tech-
niques,” in ACM SIGMETRICS Performance Evaluation Review, vol. 33, no. 1.
ACM, 2005, pp. 50–60.

4. A. McGregor, M. Hall, P. Lorier, and J. Brunskill, “Flow clustering using machine
learning techniques,” in Passive and Active Network Measurement. Springer, 2004,
pp. 205–214.

5. P. Bermolen, M. Mellia, M. Meo, D. Rossi, and S. Valenti, “Abacus: Accurate
behavioral classification of P2P-TV traffic,” Computer Networks, vol. 55, no. 6,
pp. 1394–1411, 2011.

6. K. Fall and R. Stevens, TCP/IP illustrated, volume 1: The protocols. addison-
Wesley, 2011.

7. E. Gold, “Language identification in the limit,” Information and Control, vol. 10,
no. 5, pp. 447 – 474, 1967.

8. K. Lang, B. Pearlmutter, and R. Price, Proc. 4th ICGI. Springer, 1998, ch. Results
of the Abbadingo one DFA learning competition and a new evidence-driven state
merging algorithm, pp. 1–12.

9. A. Pnueli, J. Xu, and L. Zuck, “Liveness with (0, 1, infty)-counter abstraction,”
in Proc. 14th CAV. Springer, 2002, pp. 107–122.

10. C. Parsons, Deep Packet Inspection in Perspective: Tracing Its Lineage and Surveil-
lance potentials. Citeseer, 2008.

11. M. Heule and S. Verwer, “Exact DFA identification using SAT solvers,” in Gram-
matical Inference: Theoretical Results and Applications. Springer, 2010, pp. 66–79.

12. D. Angluin, “Learning regular sets from queries and counterexamples,” Informa-
tion and Computation, vol. 75, no. 2, pp. 87–106, Nov. 1987.

13. A. Biermann and J. Feldman, “On the synthesis of finite-state machines from
samples of their behavior,” Computers, IEEE Transactions on, vol. C-21, no. 6,
pp. 592–597, June 1972.

14. C. Baier and J.-P. Katoen, Principles of model checking. MIT press Cambridge,
2008, vol. 26202649.

15. R. van Glabbeek, The linear time - branching time spectrum. Springer, 1990, pp.
278–297.

16. A. Emerson and R. Trefler, “From asymmetry to full symmetry: New techniques
for symmetry reduction in model checking,” in Proc. 10th CHARME. Springer,
1999, pp. 142–156.

17. Z. Sabahi, F. Ghassemi, and F. Bajelan, “Automatic transition sys-
tem model identifications for network applications from packet traces,”
http://fghassemi.adhoc.ir/shared/TechReport.pdf, January 2017.

18. D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic generation of software behav-
ioral models,” in Proc. 30th ICSE. ACM, 2008, pp. 501–510.

19. M. Ernst, J. Cockrell, W. Griswold, and D. Notkin, “Dynamically discovering likely
program invariants to support program evolution,” IEEE Transactions on Software
Engineering, vol. 27, no. 2, pp. 99–123, Feb. 2001.

233

www.manaraa.com

20. A. Khalili and A. Tacchella, “Learning nondeterministic mealy machines,” in Proc.
12th ICGI, 2014, pp. 109–123.

21. S. Verwer, “Efficient identification of timed automata: Theory and practice,” Ph.D.
dissertation, TU Delft, Delft University of Technology, 2010.

22. F. Aarts, B. Jonsson, and J. Uijen, “Generating models of infinite-state communi-
cation protocols using regular inference with abstraction,” in Testing Software and
Systems. Springer, 2010, pp. 188–204.

23. N. Walkinshaw, J. Derrick, and Q. Guo, “Iterative refinement of reverse-engineered
models by model-based testing,” in Proc. 2nd FM. Springer, 2009, pp. 305–320.

24. D. Lo and S. Maoz, “Scenario-based and value-based specification mining: Better
together,” Automated Software Engineering, vol. 19, no. 4, pp. 423–458, 2012.

25. Y. Wang, Z. Zhang, D. Yao, B. Qu, and L. Guo, Applied Cryptography and Network
Security: Proc. 9th ACNS. Springer, 2011, ch. Inferring Protocol State Machine
from Network Traces: A Probabilistic Approach, pp. 1–18.

26. J. Antunes, N. Neves, and P. Verissimo, “Reverse engineering of protocols from
network traces,” in Proc. 18th WCRE, Oct 2011, pp. 169–178.

234

www.manaraa.com

Flexible Transactional Coordination in the
Peer Model

eva Kühn

TU Wien, Institute of Computer Languages, Vienna, Austria,
http://www.complang.tuwien.ac.at/eva, eva.kuehn@tuwien.ac.at

Abstract. The Peer Model is a model for the specification of coordi-
nation aspects found in concurrent and distributed systems. It provides
modeling constructs for flows, time, remoting and exception handling.
The main concepts of the ground model are peers, wirings, containers, en-
tries and services. Its intent is to introduce specific modeling abstractions
of concurrency and distribution to make designs more readable and suit-
able for larger problems. However, there still exist coordination aspects
that are not straight forward to model with it. In this paper, we therefore
extend the Peer Model by modeling constructs for nested, distributed
transactions based on the Flex transaction model. This approach eases
the advanced control of structured and distributed coordination scenar-
ios that have to cope with complex, dependent and concurrent flows.
The evaluation introduces a coordination challenge that requires adap-
tive and transactional distribution of resources, dependencies between
concurrent activities, error handling and compensation. It demonstrates
the improvements that can be achieved with the new modeling concepts.

Keywords: coordination model, flexible transactions, concurrent and
distributed systems

1 Introduction

Cooperative information systems involve demanding coordination aspects. Sep-
arating coordination from application logic and providing precise models of the
coordination is crucial in order to gain robust, distributed software systems [1].
The coordination pattern approach [2] suggests generalizing the aspects of how
the participating and distributed processes interact. This enables coordination
generics to become reusable among different applications and domains. A ma-
jor benefit is that these complex parts of a distributed application need not be
re-invented for each new application, thus contributing to more reliable systems.

Coordination requirements [3] extend far beyond routing information be-
tween processes: They comprise management of complex dependencies among
many concurrent and distributed processes in real-time. Therefore, traditional
coordination models quite often reach their limitations with regard to expressive
power and usability of resulting models. Well known examples are Petri Nets [4],
Actor Model [5] and Reo [6]. All are general and powerful and have mathemat-
ical foundations. The Actor Model abstracts asynchronous communication, but

235

www.manaraa.com

the behavior of an actor intertwines application logic with communication and
synchronization logic. In contrast to Petri Nets and Actor Model, Reo provides
clear separation of coordination from application logic; however, the abstraction
level is similar to Petri Nets, where larger models tend to become unreadable
[7, 8]. An advantage of Petri Nets is that with the concept of transitions they
provide a powerful modeling construct for atomic transactions.

The Peer Model is a coordination model that introduces specific assumptions
for distributed and concurrent systems in order to make models less complex
and easier to understand. The main abstractions comprise modeling concepts for
local transactions, remoting, flow correlation, exceptions and timing. It separates
coordination from application data and logic. Application data is represented as
a “black box” and application logic is encapsulated into services that manipulate
the application data and are called by the coordination layer.

Petri Nets as well as the Peer Model are able to model any coordination
scenario. However, if the complexity of a use case increases the strict separation
of application and coordination layer might not be maintained (as coordination
logic slips into the application logic) or the model requires a lot of cumbersome
work to model details that are not directly related with the problem at hand.

A challenging coordination scenario is defined in section 3 that lets also the
original Peer Model reach its limitations with regard to modeling expressiveness.
It comprises a factory, distributed and concurrent workers, and shops where re-
sources can be ordered. The workers continuously execute tasks and compete
for shared resources. Possible concurrency shall be exploited. A further compli-
cating aspect is the distribution of processes. The specific challenges comprise:
complex dependencies between activities, automatic compensation, error and
timeout handling, and distributed transaction management.

In this paper we present an extension of the Peer Model by a flexible, dis-
tributed, nested transaction approach termed flexible wiring transactions (FWTX)
in order to ease the design of such advanced coordination scenarios. Also Petri
Nets and other related coordination models can benefit from this concept. As
proof-of-concept for the new modeling constructs the factory example is used.

The structure of the paper is: Section 2 explains the original Peer Model.
Section 3 introduces a coordination challenge and discusses a solution for it with
the original Peer Model. Section 4 presents the new flexible wiring transaction
concept (FWTX), inspired by Flex transactions [9]. Section 5 evaluates it with
the coordination scenario, demonstrates that designs become leaner, and gives
a comparison with related coordination models. Section 6 concludes the paper
and gives an outlook for future work.

2 Peer Model

The Peer Model [2, 8] is a coordination model with high-level modeling abstrac-
tions for concurrent and distributed systems: A peer relates to an actor in the
Actor Model [5]. It is an autonomous worker with ingoing and outgoing mail-
boxes, termed input and output containers (PIC and POC). The foundation of

236

www.manaraa.com

containers is tuple-space-based communication [10, 11]. A container relates to
a sub-space that maintains tuples (called entries) and supports transactional
queries on them. The coordination behavior of the peer is explicitly modeled
by wirings that are similar to Petri Net transitions [4]. It is triggered by events
represented as entries written into containers. A wiring possesses links for the
transport of entries between containers. Incoming links are termed guards and
outgoing ones actions. A wiring stands for concurrent wiring instances that ac-
tively and repeatedly execute the wiring specification. A wiring instance is one
atomic local space transaction, termed wiring transaction (WTX) on the peer’s
space containers. As transaction mechanism we assume pessimistic locking and
repeatable read isolation level. The operational behavior of a WTX is to exe-
cute in the specified sequential order first guard, then service, and finally action
links. The WTX collects all entries retrieved by guards in an internal and non-
transactional container that serves as a temporary, local entry collection for this
wiring instance. Service links transport entries between the internal wiring con-
tainer and the service and call the application function. Note that guard and
action links set locks within the WTX on the space containers. All artifacts have
properties. System properties have a pre-defined semantics, e.g. if a time-to-live
(ttl) property on a WTX or on a link expires this causes the current WTX to
rollback and start a new instance.

2.1 Artifacts of the Ground Model

Property prop = (label, val). label is a name, and val denotes a value. A system
name defines a system property and is written in typewriter style, otherwise it
is an application property. The property is named after its label.

Entry e = Eprop. Eprop is a set of properties {prop1, prop2, . . . , propn}.
Entry system properties are e.g., type (obligatory coordination type of the en-
try), ttl (time-to-live: if it expires the entry is wrapped into an exception entry1;
default is infinite), fid (flow identifier), and data (application-specific data).

Container c = (cid,E,Coord,Cprop). A container stores entries. cid is a
unique name, E a set of entries, Coord a set of coordinators (see Query below),
and Cprop a set of system properties. A container relates to an XVSM container
[11]. We differentiate between space containers and internal containers. The for-
mer ones support transactions and blocking behavior. Entries are retrieved by a
query that necessarily requires the coordination type of the entry.

Query q = (type, cnt,Sel). type is an entry coordination type. cnt is a num-
ber, a range, or the keyword ALL or NONE, determining the amount of entries to
be selected; default is 1. Sel is a sequence of AND/OR connected selectors. A
selector is lent from the XVSM query mechanism [12]. It refers to a container
coordinator (e.g. fifo, key, label, any) or is a selection expression involving
entry properties, variables and system functions.

Link l = (c1, c2, op, q,Expr,Lprop). c1 refers to a source and c2 to a target
container. op ∈ {create, copy, move, delete, test, noop, call}. create creates

1 In the assumed configuration exception entries are written into the peer’s POC.

237

www.manaraa.com

new entries and writes them to c2. copy reads entries from c1 and writes them
to c2. move reads and deletes entries from c1 and writes them to c2. delete

reads and deletes entries from c1. test checks entries in c1. noop only executes
q which must not refer to entries. call calls a service. All operations must fulfill
the query q, if it is not empty, on c1. Expr is a sequence of expressions that set or
get properties of selected entries and/or of variables2. Lprop is a set of system
properties, e.g.: tts (time-to-start: how long the link execution must wait to
start; default is 0), ttl (time-to-live: how long the link execution may be retried
until it succeeds; if it expires, a system entry of type exception is created that
wraps the original entry and provides the type of the original entry in a property
termed ettl; default is infinite), dest (specifies the pid of a destination peer to
which all selected entries on an action link are automatically transported via
intermediary I/O peers [2]), flow (if true (default), the link transports only
“flow-compatible” [2] entries – this means that the fid of all entries transported
by links of this WTX must be the same or not set), and mandatory (if true

(default), the fulfillment of the link is obligatory).

Wiring w = (wid,G,S,A, wic,Wprop). wid is a unique name, G is a se-
quence of guard links, S is a sequence of service links, A is a sequence of action
links, wic is the id of an internal container, and Wprop is a set of system prop-
erties, e.g., tts (time-to-start; time that the next instance of this wiring waits
until its start; default is 0), and ttl (time-to-live; maximal execution time of
one instance of this wiring; default is infinite). All links are numbered, specifying
an execution order which has impact on concurrency and performance. Entries
selected by guards are written into wic. Then w calls the service links in the
specified sequence. Finally, the wiring executes the action links. c2 of a guard
and c1 of an action link is wic. There is one dedicated wiring in a peer termed
init wiring with its first guard having the identifier “*”; it is fulfilled exactly
once, namely when the peer is activated.

Service s = (sid, app). sid is the name of the service and app a reference to
the implementation of its application logic (method). A service gets entries from
its wiring’s wic as input and emits result entries there (via service links). It has
access to all entry properties including data.

Peer p = (pid, pic, poc,Wid, Spid,Pprop). pid is a unique name, pic and poc
are the ids of incoming and outgoing space containers where p receives and
delivers entries, Wid is a set of wiring ids, Spid is a set of ids of sub-peers, and
Pprop is a set of system properties.

Peer Model PM = (P,W,C). P is the set of all peers including sub-peers,
W is the set of all wirings, and C is the set of all containers in the system.

2 Application variables have the scope of the current wiring instance and start with
a “$”. They are set by Expr. Expr may involve system functions like “fid()” which
generates a new unique flow identifier, as well as system variables (starting with
“$$”) that are set by the system, e.g., $$PID (name of the current peer), $$FID
(actual flow id within the current wiring instance), and $$CNT (number of entries
selected by the current link).

238

www.manaraa.com

2.2 Graphical Notation

Fig. 1: Example peer.

The graphical representation of the Peer Model is shown in Figure 1, outlin-
ing one peer with one wiring that has two links and calls one service (we skip
the depiction of service links). The guard link connects the peer’s pic with the
wirings’s wic, and the action link connects the wiring’s wic with the peer’s poc.
Note that the source space container of a guard can also be the peer’s poc or
the poc of a sub-peer. Analogously the target space container of an action link
can also be the peer’s pic or the pic of a sub-peer. A wiring can have many links
that are numbered with G1, . . ., Gk, S1, . . ., Sm, A1, . . ., An (the link ids are
not depicted in Figure 1). A peer can have many wirings.

3 Coordination Challenge

The contrived coordination example is a bakery with autonomous bakers who
are specialized in producing certain products like bread, pizza, cake etc. Each
product requires a defined amount of ingredients (eggs, flour, sugar etc.). The
bakery operator provides the ingredients for the bakers which compete for them.
If an ingredient runs short, the concerned bakers cannot proceed. The bakery
tries to procure all missing ingredients at respective shops.

A baker’s job is to produce doughs for the respective product as fast as
possible and to send each dough immediately to the bakery. For this, he/she
must first get hold of the needed ingredients. Another critical time is the stirring
of the dough. If 5 pieces of dough are ready they form a “charge” that is baked in
the oven. The baker informs the bakery when a charge must be sent to the oven.
Only doughs of the same charge of a baker are baked together. However, the
baker has a timeout for producing one dough. If it exceeds, the current charge
– although incomplete – shall nevertheless be baked to avoid the risk of already
produced dough to go off, provided the charge contains at least one dough.

The example is complicated to model, because of challenging dependencies
between the concurrent coordination steps: The occurrence of failures
(the lack of an ingredient) and timeouts (the obtaining of the ingredients or

239

www.manaraa.com

Fig. 2: Baker and Bakery (without FWTX).

240

www.manaraa.com

Fig. 3: Shop (without FWTX).

the dough stirring service takes too long) influence the completion of a charge.
The baker must recognize in real-time whether a charge is complete or whether
the production is stuck (due to errors or timeouts) and inform the bakery
to start the delivery of the current charge to the oven at the right moment.
The bakery is responsible to fill up its stock if resources run low. We assume a
simple policy whereby in a defined time interval the bakery checks its stock to be
below a certain boundary and tries to completely fill it up. It orders each kind
of ingredient at a different shop. The distributed procurement transaction
shall succeed only if all ingredients can be purchased; otherwise nothing is bought
and the bakery retries the procurement process later on. Shops are autonomous
and not willing to hold locks on items: They immediately remove the ordered
ingredients from their stock and put them in a temporary container for the
client. If the global transaction succeeds, they deliver the ingredients to the
client; otherwise a compensation must take place that moves the reserved
ingredients back to the shop’s stock. This means that other clients might think
that the shop has no items any more, albeit later on they are put back to the
stock because the client has aborted the global transaction.

3.1 Bakery without FWTX

Figures 2 and 3 model the use case with the original Peer Model, i.e. without
FWTX. The three main peers types are shown: Baker, Bakery and Shop. Their
behavior is represented by wirings as detailed below for each peer. The dough
production must be split into two wirings to model the acquisition of ingredients
before the dough stirring can start. All phases of the distributed procurement
transaction between bakery and shops and the cleaning up of outdated entries
used by the distributed transaction management must be modeled explicitly.

241

www.manaraa.com

Baker Peer:

– Init: Create an entry for the next charge with a new fid, a ttl, and 0 doughs
(property k), and set current phase to 1 (A1).

– ProduceDough1: If there is a charge with less than 5 doughs in phase 1 (G1),
then set its phase to 2 (A1) and create a request with a ttl, and send it to
the bakery to send ingredients for the next dough (A2).

– ProduceDough2: If there is a charge with less than 5 doughs in phase 2 (G1),
and if the needed ingredients are there (G2–G3), then call the dough stirring
service, increment the dough count on the charge and set its phase to 1 (A1),
and send the dough, that was produced by the service, within the current
charge’s flow to the bakery (A2). The WTX is bounded by a timeout (ttl).
If it expires, it performs a rollback, releases all locks on entries, and retries.

– ChargeIncomplete: If the charge has expired and turned into an exception
(G1), then create a new charge with a new flow id (A1), and tell the bakery
to deliver the incomplete charge, referred to by its flow id, to the oven (A2).

– ChargeComplete: If the current charge is complete with 5 doughs (G1), then
start a new charge within a new flow id (A1), and tell the bakery to deliver
the complete charge, referred to by its flow id, to the oven (A2).

Bakery Peer:

– DeliverCharge: Upon receipt of a deliver request (G1), take all doughs of the
same charge (correlated by their flow id) and remember in the local variable
$n how many were taken (G2), and send them to the oven (A1) if there
exists at least one dough.

– SendIngredients: If a sendIngredients request is received (G1) and if the
requested ingredients (G2–G3) are there, then send them to the requesting
baker (A1–A2).

– ProcureStart: In a defined interval (modeled as tts of the wiring) check how
many ingredients are still there (G1–G2). If one of them has fallen below
a defined threshold create a new fid (G3). If ingredients are missing, then
create a ctrl entry within this flow and store it in the PIC in order to control
the distributed procurement transaction (A1), and send an order request for
each ingredient to the corresponding shops (A2–A3).

– ProcureCommit: The information that all shops are in prepared state has
received (G1), and the corresponding ctrl entry (G2) for this flow exists:
Create commit entries within this flow carrying the id of this peer and send
them to all shops with information about the confirmed order (A1–A2).

– ProcureAbort: A shop has sent an aborted entry (G1), and the corresponding
ctrl entry (G2) is found: Create abort entries within this flow and send them
to all shops (A1–A2).

– CleanUp1: Remove an outdated prepared entry (G1) for which no ctrl entry
exists any more (G2).

– CleanUp2: Remove an outdated aborted entry (G1) for which no ctrl entry
exists any more (G2).

– CleanUp3: Remove an sendIngredient exception (G1).

242

www.manaraa.com

Shop Peer:

– OrderOk: If an order request arrived (G1), and the required amount of the
ingredient can be taken from the shop’s stock (represented by its PIC) (G2),
then temporarily move these ingredients to the POC with the same fid as
the order (A1), and send a prepared entry to the requesting client within
this flow indicating what has been reserved for it and by which shop (A2).

– OrderNotOk: If an order request is received (G1), but the required amount
of this ingredient is not in stock (G2), then send aborted to the client in this
flow (A1). Note the counter expression “[$n; NONE]” on G2: It models a
range with the meaning “not at least $n entries”.

– Cancel: A client has aborted the distributed transaction (G1), and the re-
served amount of ingredients is therefore withdrawn from the intermediate
storage (G2): Write these ingredients back to the shop’s stock (A1).

– DeliverItems: The client has issued a commit for the distributed transac-
tion (G1), and the ingredients are therefore removed from the intermediate
storage (G2): Send them to the respective client (A1).

4 Flexible wiring transactions (FWTX)

The Flex transaction model [9, 13, 14] defines nested transactions that allow the
early commit of sub-transactions, thus relaxing the isolation property of transac-
tions. The tradeoff is that so-called compensate actions must be supported. Com-
pensate actions are motivated by Sagas [15]. They are application defined logic
that carries out a compensation of the effects of committed sub-transactions,
however they cannot really “undo” in the strict sense an effect that was al-
ready seen by others, but only perform a “semantic” compensation. They are
activated by the transaction manager if a sub-transaction has committed and
then one of its parent transactions fails. No cascading compensation is done,
i.e. if a sub-transaction commits, it is responsible for the compensation of its
sub-transactions. The Flex transaction model supports compensatable as well
as non-compensatable sub-transactions. The former perform an early commit,
the latter delegate their commit to the caller (cf. nested transactions [16]).

The idea to use a flexible transaction model to coordinate distributed pro-
cesses in heterogeneous systems was firstly used by the coordination kernel [14],
implementing a distributed virtually shared object space. The coordination ker-
nel extends the Flex transaction model by on-commit and on-abort actions that
are called if a transaction commits respectively aborts. It was the basis for the
later CORSO (coordinated shared objects) coordination system [17] that demon-
strates that the Flex transaction model can be implemented efficiently.

We adapt here this concept for the Peer Model. The local transaction of
a wiring (WTX) is extended towards flexible wiring transactions (FWTX). A
WTX locally executes all links in one atomic step (see section 2.1). A FWTX
in addition supports nested flexible transactions, as well as compensate actions
(optionally cascading or not), on-commit actions, on-top-commit actions, and
on-abort actions. The definition of a wiring is enhanced by introducing passive

243

www.manaraa.com

wirings which are not actively executing instances, but must be activated by
other FWTXs. Passive wirings therefore may take input parameters where the
calling FTWX can pass local variables values; the communication between peers
must be carried out by entries.

An instance of a passive wiring is activated by a parent FWTX either (i)
via a guard link, or (ii) as a compensate, on-commit, on-top-commit or on-abort
action (which in turn is a FWTX). For (i) the link definition (see section 2.1 is
extended in that op can also be wiring, denoting the sub-wiring to be called in a
new sub-FWTX. For (ii) new wiring system properties (Wprop) are introduced:
on-top-commit, on-commit, on-abort, and compensate to specify a passive
local or remote wiring; and a boolean property termed cascading to define
whether a compensation action is cascading or not. Parameters to be passed to
the sub-wiring activation are modeled as part of Expr as variables, where the
i-th parameter is referred to by $i. A sub-FWTX is activated exactly once. It
inherits the flow id of the parent-FWTX, and vice versa, if at the time of its
activation the flow id of the parent-FWTX is not yet determined, it can set it.

A parent FWTX is only dependent on synchronous sub-FWTXs that are
called via guard links, provided that the property mandatory of this link is not
turned off. The link execution must wait until the sub-FWTX – which can be
a remote one – has finished. This concept extends the expressiveness of guards
in that it becomes possible to send a request to a remote peer and wait in a
subsequent guard for entries that the peer sends back. Otherwise this would
require two or more wirings – implying that the flow of control becomes more
complicated – as well as the explicit treatment of possible errors.

Let a FWTX X have an on-commit (OC), an on-top-commit (OTC), an on-
abort (OA), and a compensate (COMP) action. OC is called immediately after
X has committed. OTC is called immediately after the top-level-FWTX of X has
committed. If X is the top-level-FWTX then OTC is called immediately after
OC. OA is called immediately after X has aborted. COMP is called if X has
committed and later on a parent-FWTX of it aborts. It runs asynchronously to
X. If cascading is true, then the compensation is recursively propagated to all
sub-FWTXs of X that were called via guard links. X waits with the execution
of its next wiring instance (X’) until all OC, OTC or OA executions have com-
pleted. The time how long it waits can optionally be configured by respective
ttl wiring system properties for on-(top-)commit and on-abort actions. X is
neither dependent on OC, OTC, COMP nor OA. On-commit, on-top-commit,
on-abort and compensate actions are automatically committed.

The distributed transaction managers jointly control the execution of FWTXs:
A FWTX must persist the information about each called sub-FWTX. If FWTX
itself is nested, it must store its parent-FWTX and top-level-FWTX. It passes
the id of its own FWTX and the top-level FWTX to each called sub-FWTX.
If a sub-FWTX commits or aborts, it reliably sends this decision to its parent-
FWTX, i.e. it repeats the sending until an acknowledgment is received. If it
commits, it stores its compensate action until it receives the final decision of
the top-level-FWTX. The necessary assumptions are that a crashed site even-

244

www.manaraa.com

tually will recover and that eventually each pair of sub-FWTX and its direct
parent-FWTX is available at the same time.

The model avoids that resources are locked for a long period of time or
forever. The interesting error cases are caused by dependent sub-FWTX acti-
vations via guards. Breaking it down to the pair of a parent-FWTX and its
sub-FWTX these situations comprise: *) A committed sub-FWTX must wait
for its parent-FWTX’s decision whether to compensate or not. During this time,
because the relaxation of the isolation property allowed the early commitment
of the sub-FWTX, no data need to be locked. The compensation is a semantic
one; it is standalone and may run even a long time after the commitment of the
sub-FWTX. *) A parent-FWTX cannot commit because its sub-FWTX did not
answer yet. In this case it is recommended that the parent-FWTX uses a ttl.
If the ttl fires then eventually the sub-FWTX will be aborted, too or needs to
compensate. *) A sub-FWTX has committed, but the commit did not reach its
parent-FWTX. Either the parent-FWTX waits until it can communicate again
with sub-FWTX, or it aborts meanwhile. In the former case parent-FWTX can
proceed, in the latter case eventually sub-FWTX learns about parent-FWTX’s
abort and will compensate.

In the graphical notation, the declaration of a passive wiring has a box with
a dotted line and a parameter list enclosed by “()” brackets. The activation of
a sub-FWTX via a guard uses the wiring operation.

5 Proof-of-Concept

As a proof-of-concept for the new FWTX concepts of the Peer Model, we present
a solution with it for the bakery example. The number of wirings could be
reduced from 17 to 10 (i.e. by ca. 41%) and the total number of links from 66
to 28 (i.e. by ca. 58%).

5.1 Bakery with FWTX

The baker uses a sub-FWTX to get ingredients from the bakery. If it fails,
an on-abort action sends the incomplete charge immediately to the oven and
starts a new charge. The distributed procurement transaction of the bakery uses
sub-FWTXs with compensation to order ingredients at shops. If one shop fails,
the other one is automatically aborted or compensated. If both succeed, their
commit is implicitly triggered by the commit of the Procure FWTX; on-top-
commit-actions at the shops start the goods delivery to the client.

The improvements of the version with FWTX (see section 3.1) over the one
without FWTX are summarized in the following.

Baker Peer (with FWTX):

– Init: No difference.

245

www.manaraa.com

– ProduceDough: Consolidates ProduceDough1 and ProduceDough2 in one
wiring where G2 calls a sub-wiring at the bakery termed SendIngredients.
The definition of an on-abort action is added to the wiring to call a local
sub-wiring termed StartNewCharge.

– ChargeComplete: Has only one guard (G1) that tests if the charge is complete
and if so, calls the sub-wiring StartNewCharge as on-commit action.

– StartNewCharge: Is a new passive wiring. It takes the current charge entry
(G1), resets both its fid and k and writes it back to the PIC (A1). It calls
the DeliverCharge sub-wiring of the bakery as on-commit action and passes
it the number of doughs in this charge as parameter.

Bakery Peer (with FWTX):

– DeliverCharge: Is a passive wiring called by the baker every time it starts a
new charge via StartNewCharge. Therefore the original G1 is not needed.

– SendIngredients: Is a passive wiring called by the baker’s wiring Produce-
Dough in G2. Therefore the original G1 is not needed.

– Procure: Consolidates ProcureStart, ProcureCommit, ProcureAbort, Clean-
Up1, CleanUp2 and CleanUp3 in one wiring. G1–G3 correspond to G1–G3
of the original ProcureStart wiring. Instead of sending order entries to the
shops it calls the passive Order wiring of each shop as a sub-FWTX (G4–G5).
This models the distributed transaction with compensation.

Shop Peer (with FWTX):

– Order: Consolidates OrderOk and OrderNotOk. It is a passive wiring that
is called by the Procure wiring of the bakery (G4–G5). It has a compensate
action that cancels the reservation and an on-top-commit action that delivers
the reserved ingredients if the top-level-FWTX commits.

– Cancel: Passive wiring called as compensate action of the Order wiring.
– DeliverItems: Passive wiring called by Order upon top-level commit.

5.2 Related Coordination Models

A realization of the bakery example with the Actor Model is quite straight for-
ward, but mixes application and coordination logic. On the other side, models
like Petri Nets and Reo [18] are very general and therefore powerful enough
to also model complex coordination scenarios, however, such designs will be-
come complex and exhibit deficiencies and/or become verbose and unreadable
(compare with [7, 8] who demonstrated this fact with even less demanding coor-
dination and collaboration problems like split/join and leader election without
the assumption of failures etc.). The problem is that “lack of appropriate model-
ing primitives has often resulted in descriptions with either reduced concurrency
or increased complexity of the net structure and/or the net inscriptions” [19].

246

www.manaraa.com

Fig. 4: Baker, Bakery and Shop (with FWTX).

247

www.manaraa.com

The Transactor Model [20] follows a similar goal like our approach, i.e. to
provide language constructs that ease the management of distributed states.
It introduces the following concepts: stabilize, checkpoint, dependent test, and
rollback. With stabilize an actor guarantees that its state will not change any
more (it refers to the prepared phase in a two-phase-commit protocol). A check-
point is successful if the transactor is not dependent on any other actor that is
in a volatile state. Otherwise it will either perform a rollback or is equivalent
to a noop (if there have not yet been enough messages received to determine
the dependency). A successful checkpoint stores the state of the actor so that a
rollback to this state is possible. The dependent test checks whether the actor
is dependent on another one. As the entire protocol is asynchronous, this test
does not block and therefore the user must take care of this situation explicitly.

A major difference of FWTX is that they support multiple concurrently run-
ning flows and automatic execution of user defined actions at certain points in
time, namely on-top-commit, on-commit and on-abort of transactions. In addi-
tion, the isolation property is relaxed and sub-transactions may early commit.
Semantic compensation is used in contrast to the Transactor Model that carries
out a rollback. The advantage of compensation is that distributed processes stay
autonomous and need not hold locked states over a long period of time.

6 Conclusion

Coordination requirements are challenging and lack of adequate modeling prim-
itives leads to unusable models. We presented an extension of the Peer Model
by distributed “flexible wiring transactions (FWTX)” to make wirings more
powerful. FWTX enable the control of complex distributed interactions in a
very flexible way. The new modeling concepts are on-commit, on-top-commit,
on-abort and compensation actions that are designed as passive wirings. With
help of FWTX also coordination situations where complex dependencies be-
tween concurrent distributed interactions take place or where multi-direction
interactions are demanded, can be modeled straight ahead. The treatment of
failure situations is easy because the distributed transaction management auto-
matically coordinates the activation of the on-commit, on-top-commit, on-abort
and compensation actions. As evaluation, a proof-of-concept is given that shows
the design of the selected coordination scenario whereby the separation of ap-
plication and coordination data and logic could be preserved. The model with
FWTX is significantly leaner: the total number of wirings could be reduced by
41% and the number of links by 58%. We believe that also other coordination
models can benefit from the introduction of a Flex transaction based coordina-
tion mechanism. In future work we will use FWTX to bootstrap other distributed
transaction models and implement a simulation tool for automatic analysis.

Acknowledgment. Many thanks to Stefan Craß, Geri Joskowicz, Martin Planer,
Matthias Schwayer, Jörg Schoba, Peter Tilian, and the anonymous reviewers for
their comments on this paper.

248

www.manaraa.com

References

1. Astley, M., Sturman, D.C., Agha, G.A.: Customizable middleware for modular
distributed software. Communications of the ACM 44(5) (May 2001) 99–107

2. Kühn, E.: Reusable Coordination Components: Reliable Development of Coop-
erative Information Systems. International Journal of Cooperative Information
Systems 25(4) (2016) World Scientific Publishing Company.

3. Malone, T.W., Crowston, K.: The Interdisciplinary Study of Coordination. ACM
Computing Surveys (CSUR) 26(1) (March 1994) 87–119

4. Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Technische Hochschule
Darmstadt (1962)

5. Agha, G.A.: ACTORS: A Model Of Concurrent Computation In Distributed Sys-
tems. MIT Press (1990)

6. Arbab, F.: Reo: A Channel-based Coordination Model for Component Composi-
tion. Mathematical Structures in Computer Science 14(3) (2004) 329–366 Cam-
bridge University Press.

7. Börger, E.: Modeling Distributed Algorithms by abstract State Machines Com-
pared to Petri Nets. In: 5th International Conference on Abstract State Machines,
Alloy, B, TLA, VDM, and Z (ABZ). LNCS, Springer (2016) 3–34

8. Kühn, E., Craß, S., Joskowicz, G., Marek, A., Scheller, T.: Peer-Based Program-
ming Model for Coordination Patterns. In: 15th Int. Conference on Coordination
Models and Languages (COORDINATION). LNCS, Springer (2013) 121–135

9. Bukhres, O., Elmagarmid, A.K., Kühn, E.: Implementation of the Flex Transaction
Model. IEEE Data Engineering Bulletin 16(2) (1993) 28–32

10. Gelernter, D.: Generative Communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 7(1) (1985) 80–112

11. Kühn, E., Mordinyi, R., Keszthelyi, L., Schreiber, C.: Introducing the Concept
of Customizable Structured Spaces for Agent Coordination in the Production Au-
tomation Domain. In: 8th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), IFAAMAS (2009) 625–632

12. Craß, S., Kühn, E., Salzer, G.: Algebraic Foundation of a Data Model for an Exten-
sible Space-Based Collaboration Crotocol. In: International Database Engineering
and Applications Symposium (IDEAS). ACM (2009) 301–306

13. Elmagarmid, A.K.: Database Transaction Models for Advanced Applications. Mor-
gan Kaufmann (1992)

14. Kühn, E.: Fault-Tolerance for Communicating Multidatabase Transactions. In:
27th Annual Hawaii International Conference on System Sciences (HICSS), IEEE
(1994) 323–332

15. Garcia-Molina, H., Salem, K.: Sagas. SIGMOD Record 16(3) (December 1987)
16. Moss, E.B.: Nested Transactions: An Approach to Reliable Distributed Comput-

ing. Technical report, Cambridge, MA, USA (1981)
17. Kühn, E.: Virtual Shared Memory for Distributed Architecture. Nova Science

Publishers (2001)
18. Meng, S., Arbab, F.: A Model for Web Service Coordination in Long-Running

Transactions. In: Fifth IEEE International Symposium on Service Oriented System
Engineering (SOSE). (2010) 121–128

19. Christensen, S., Hansen, N.D. In: Coloured Petri nets extended with place capac-
ities, test arcs and inhibitor arcs. Springer (1993) 186–205

20. Field, J., Varela, C.A.: Transactors: A programming model for maintaining globally
consistent distributed state in unreliable environments. In: 32nd ACM SIGPLAN-
SIGACT Symp. on Principles of Programming Languages (POPL). (2005) 195–208

249

www.manaraa.com

Posters

www.manaraa.com

Performance Test Requirements Extraction Using
Formal Specifications

Zahra Rahimi Nassab, Hamideh Sabouri, Mohamad Jafari Monfared, and
Hassan Haghighi

Shahid Beheshti University, Iran,
zrahiminassab@gmail.com, h_sabouri@sbu.ac.ir, mohamadjafari@gmail.com,

h_haghighi@sbu.ac.ir

Abstract. A number of methods have been proposed for performance
testing which generate test requirements or test data using the code or
based on an informal/semi-formal description of the system. In this pa-
per, we propose a novel approach to generate performance test require-
ments based on a formal specification of the software under test. The
main contribution of our approach is that, it can be applied at the ini-
tial stages of the software development process and it is based on formal
specifications.

Keywords: Performance testing, Test requirement extraction, Formal
specification

1 Introduction

One of the main non-functional testing methods is software performance testing.
The main goal of performance testing is to find conditions in which the software
has high latency, high response time, or low throughput. Performance testing
involves determining the processes and inputs which have a significant effect on
the performance of the whole system [1]. As generating test data manually is a
labor-intensive and time-consuming task, many techniques have been proposed
for automatic test generation. A well-known approach is model-based testing
[3] in which the test cases are generated from models with respect to test re-
quirements. However, these approaches usually focus on functional requirements
of systems. In this paper, we propose a model-based approach to extract a set
paths with high performance cost from the automaton which represents the spec-
ification of the software under test (SUT). The iterative nature of our approach
prevents path explosion. To the best of our knowledge, this work is the first at-
tempt for early testing of software performance requirements based on a formal
specification. The main benefits of our approach can be summarized as:

– It can be applied at the early stages of the software development process,
therefore, it has the benefits of early testing.

– The incremental nature of the proposed algorithm reduces the possibility of
path explosion and makes our approach scalable.

– All the steps can be automatized which reduces the test effort.

250

www.manaraa.com

2 Test Requirement Generation Algorithm

Using our approach, one can use automata-based specification of programs to
generate test data. To model the automaton for each software, we used Uppaal
[2] which has a suitable environment for defining automata-based specifications.
Figure 1 represents an overall view of our approach. In the first step, our ap-
proach takes the automata-based specification of the software under test and (1)
then gives depth to each state of the automaton. (2) After that, the automaton
is pruned with respect to the pruning depth. (3) In the resulting automaton,
paths between start and final states are traversed randomly and parts of final
paths are obtained in each iteration. (4) Gained parts are grouped based on their
similarities. (5) In the next step, we select the most costly paths parts from each
group. These parts make the final paths (6)If the termination conditions are not
met,it backs to the pruning phase to start another iteration of the algorithm. (7)
Otherwise, paths with high performance costs are completed and (8) reported
as test requirements.

Fig. 1. Overview of our approach

2.1 Depth Definition and Pruning Method

In the first step of our approach, we model the system under test formally
using an automaton. To specify the depth of each state, we use the following
rules:

– The depth of the start state is zero.
– The depth of state s with k incoming transitions from the states s1, ..., sk is
min(ds, d1, ..., dk) where di represents the depth of si and ds is the current
depth of s if a depth is already assigned to it.

251

www.manaraa.com

After specifying the depth of each state, we prune the automaton based on a
pruning depth which is specified by the tester. The pruning algorithm uses the
notion of forward transition. Assume transition t from si to sj where di and dj
represent the depths of si and sj accordingly. We call t a forward transition if
dj = di + 1.

The automaton is pruned with respect to pruning depth n according to the
following steps:

1. All states with depth k > n are omitted along with all of the their outgoing
transitions.

2. All forward transitions from the states with depth n are omitted.

2.2 Path Extraction and Grouping

After determining the depth of states and pruning the automaton, we tra-
verse the automaton randomly to extract a number of paths from the start state
to the final states. This process is done iteratively until the termination condi-
tions are met. In the next step, the extracted paths are grouped based on their
similarities. Path grouping and choosing one path from each group make the se-
lected paths diverse and decrease similarity between them. For this purpose, we
use the similarity of the states which are visited during path traversing, as the
grouping criterion. We use the K-means method [4] to group the paths. In each
group, we select the path with the highest cost (or the worst performance). The
cost of each path is computed based on the number of visited states, the number
of conditions, the number of assignments, and the number of costly operations
(e.g., database accesses, method calls, etc.) in the path. Note that the number
of groups should be specified as a parameter of the algorithm.

The algorithm terminates if one of the following conditions holds:

– The final state of the automaton is reached: This condition occurs when the
size of the specification is small or medium

– The maximum depth (which is specified by the tester) is reached: This con-
dition occurs when the size of the specification is large.

– No new path can be found: This situation occurs when in some consecutive
iterations, path constraints for all paths don’t change.

2.3 Test Requirement Generation

A path constraint in each iteration of the algorithm is the conjunction of all
transitions conditions which are met during path traversing. After the termi-
nation of the algorithm, the ultimate path constraint is the conjunction of each
iteration’s conditions for that path. We apply SMT-solver to this predicate along
with the initial conditions of the state variables to find the appropriate intervals
and values for each variable.

252

www.manaraa.com

3 Evaluation

We applied our approach on a library system, specified and developed by the
authors. This library system has several methods such as register, search, delete
members and books. We compare the generated test data with the test data
produced by the SLG approach [5] as a white-box method based on symbolic
execution. Due to lack of space, we don’t show automaton-based specification
and just mention comparison results.

Our approach and SLG show different results. The difference between the test
data obtained from applying our approach and the ones generated by the SLG
method can be justified as follows. We assign the maximum weight to database
accesses when computing the cost of each path in our algorithm. Therefore, the
paths with more database accesses had a greater chance for selection. In contrast,
SLG tends to find paths with more computational operations. Consequently, a
path which involves database access has been identified by our approach, while
it has not been extracted by SLG. On the other hand, a path that contains many
computational operations has been extracted by SLG, while it has been ignored
by our algorithm. With regard to the above reasons for observed differences, we
can still say that the results of our approach are reasonable if we assume the
results of SLG as the reference.

4 Conclusion

In this paper, we introduced an approach to generate performance test require-
ments using automata-based, iterative approach. In future work, we are planning
to use meta-heuristics to select candidate paths more efficiently and we are go-
ing to implement an integrated framework to automate the whole process of
performance test data generation from a given automaton.

References

[1] Avritzer and Alberto. Software performance testing based on workload char-
acterization. Proceedings of the 3rd international workshop on Software and
performance. ACM, 2002.

[2] Bengtsson and Johan. Uppaal - a tool suite for automatic verification of
real-time systems. hybrid systems iii. Springer Berlin Heidelberg, 1996.

[3] Pretschner and Alexander. Model-based testing. Proceedings. 27th Interna-
tional Conference on Software Engineering, ICSE 2005. IEEE, 2005.

[4] Wagstaff and Kiri. Constrained k-means clustering with background knowl-
edge. ICML, 1, 2001.

[5] Zhang and Pingyu. Automated test case generation to validate nonfunctional
software requirements. Diss.University of Nebraska, 2013.

253

www.manaraa.com

A Privacy-Preserving Synchronization Protocol
in Actor Models

Mahboubeh Samadi, Fatemeh Ghassemi, and Ramtin Khosravi

University of Tehran, Tehran, Iran
{mbh.samadi,fghassemi,r.khosravi}@ut.ac.ir

Abstract. In actor-based models, sensitive data can be easily inferred
from the sequences of messages, and hence, the privacy of data is vio-
lated. To protect data privacy against such inferences, a synchronization
protocol should be used to coordinate actors in a distributed way to
avoid the formation of the sequences violating the privacy. However, the
current synchronization mechanisms proposed for asynchronous settings
are not sufficient in this regard. We introduce a synchronization protocol
to preserve the data privacy.

Keywords: Data privacy, Actor-based models, Coordination, Inference
attack

1 Introduction

An actor model is a mathematical model of concurrent computation in dis-
tributed systems, which abstract away from the network by considering its ef-
fects [5, 6]. The non-functional requirements such as privacy should be preserved
in an actor model. By privacy, we need to preserve the system from the inference
attacks of an adversary. In other words, an adversary, which is either honest-but-
curious (HBC) [1] or malicious such as Dolev-Yao [2], should not be able to infer
sensitive information from non-sensitive information. One source of inferences in
the asynchronous setting is the message sequences. Although all the participat-
ing actors are permissible to send such messages or access data, such inferences
cannot prohibited when a legitimate participant acts as an HBC attacker unless
we prevent from the sequence formation. There are several approach to over-
come this challenge: one may consider a central monitoring actor who is aware
of all sequences leading to an inference, and it receives a copy of all messages
to control the message flows in a way to avoid a sequence formation. However,
this solution is not feasible in actor models due to delay of network: the message
which completes a sequence may be received too late by the monitor.

One way to coordinate actors in a distributed system is using synchronization
mechanisms implemented either by a set of message passing such as RPC-like
messaging and local synchronization constraints in [5] or a special mediator like
selectors introduced in [3]. By these synchronization mechanisms, inferring a
private information from the sequence of messages can’t be prevented. So we

254

www.manaraa.com

propose a synchronization protocol which requires essential primitives, such as
blocking and a special message communication, to prevent inferring a private
information.

2 Assumptions

The privacy requirements which should be preserved in the model can be spec-
ified by a set of message sequence, so-called partial message sequences ranged
over by ω, which should not be formed. Let Msg be the set of messages com-
municated between actors ranged over by m. Due to the asynchronous spirit
of communications in actor models, the occurrences of messages from which an
attacker can infer, are not consecutive and there will be some other messages be-
tween any two messages. Let IP (Msg) denote the powerset of all partial message
sequences over Msg . Thus, each privacy requirement r ∈ IP (Msg) constitutes
a set of partial message sequences where each sequence specifies an inference
attack from the point view of a HBC attacker.

It is assumed that partial messages sequences are distinct in a privacy re-
quirements. It means that they do not have any subsequence in common. Hence,
each actor uniquely recognizes the sequence that will be formed by sending mes-
sage m by getting a confirmation from one of its pre-senders and, consequently it
can decide if it can send the message m or not. By pre-sender we mean the sender
identifiers of the messages preceding m in the sequence ω. We also assume that
all the messages belong to a workflow of the system and hence, all messages are
interrelated. This assumption is easily achieved by stamping related messages
with the same number.

3 Synchronization Protocol

We introduce a synchronization protocol to coordinate actors to prevent forming
the set of partial message sequence in each execution of the system. Each actor,
before sending message m, finds all the sequences in privacy requirement r which
include that message. If the message belongs to one or more sequence in r, then
the actor should perform these steps before sending the message:

1. It sends a message to each pre-sender of m and asks them if they has previ-
ously send the preceding messages.

2. It waits until their responses are received.
3. If the preceding message of m in the sequence ω ∈ r had been sent, then it

checks this condition:
– If its message is the last message of the sequence, it should perform an

appropriate action.
– If the message is not the last message of the sequence, it is sufficient to

save the message and then sends it.
4. The pre-sender waits until the actor replies to its message. In this situation

the pre-sender actor doesn’t process any messages.

255

www.manaraa.com

The appropriate action in the step 3 depends on the modeler. If the system
provides a model of design-time, an error action can be generated. So, by model
checking the system, we provide the modeler a scenario which leads to the se-
quence formation. If the system is a run-time model, the message will not be
sent.

The actor which receives a monitoring message performs following steps:

1. It checks its message history to find out if the message indicated by the
received message, has been previously sent or not.

2. Based on the message history, it replies to the sender of the received message
if it is the legitimate post-sender of the message.

3. The receiver will be blocked until it receives the ack message from the sender.

Example: Consider the actors a, b, c and d and the privacy requirement r:

{⟨(a, b1, b) ∗ (c, b2, b) ∗ (d, b3, b)⟩, ⟨(a, d4, d) ∗ (b, d5, d) ∗ (c, d6, d)⟩}

Assume that the actor d wants to send a message with method identifier b3 to
the actor b (i.e., (d, b3, b)). Based on the proposed algorithm, the actor d should
perform these steps:

1. It sends a monitoring message to its pre-sender (i.e., c) to examine if its
preceding message (i.e., (c, b2, b)) was sent or not.

2. It waits until its response will be received.
3. Suppose that the actor c replies to the actor d that the message (c, b2, b)

hasn’t been sent.

In this situation, the actor d decides to send the message (d, b3, b). If the ac-
tor c isn’t blocked, it is possible that before d resumes its processing to send
the message (d, b3, b), the actor c sends the message (c, b2, b). So the sequence
⟨(a, b1, b) ∗ (c, b2, b) ∗ (d, b3, b)⟩ will be appeared in the state space of the system
model and so the privacy requirement r will be violated.

4 Privacy-Preserving Example in Rebeca

Rebeca is an operational interpretation of the actor model that is to say it
is an actor-based language with formal semantics and model checking tools[4].
We apply our synchronization protocol in Rebeca. We assume that the privacy
requirement is ⟨(a, b1, b)∗(c, b2, b)∗(d, b3, b)⟩ and the actor b is our HBC actor, so
it has an inference engine to infer the private data. We have added the inference
capability to its code. Upon inferring this, the boolean variable infer will be true.
To prevent violating the privacy requirement, we use busy waiting in Rebeca.
By model checking the model, it is shown that boolaen variable infer is false and
privacy requirement is preserved in the model. The Fig.1 shows our model and
Fig.2 shows our protocol which used in the model. In this example the actor d ,
before sending its message, should ask from the actor c to check if the message
(c, b2, b) is sent.

256

www.manaraa.com

1 actor a {
2 a1(){ b!b1();}}
3 actor b {
4 bool b1,b2, infer=false;
5 b1(){b1=true;}
6 b2(){ if (b1) b2=true;}

7 b3(){ if (b2) infer=true;}}
8 actor c {
9 c1(){ b!b2();}}

10 actor d {
11 d1(){ b!b3();}}

Fig. 1. Simple example in Rebeca.

1 actor a {
2 a1(){ b!b1();}}
3 actor b {
4 bool b1,b2, infer=false;
5 b1(){b1=true;}
6 b2(){ if (b1) b2=true;}
7 b3(){ if (b2) infer=true;}}
8 actor c {
9 bool snd=false,wait=false;

10 c1(){ if (wait==false){ b!b2();
snd=true;}

11 else self !c1();}

12 check(){ if (snd) d!ack(true) ;
wait=true;}

13 ack(){wait=false;}}
14 actor d {
15 bool wait=true,sndchck=false;
16 ack(bool flag) {wait=flag;

c!ack();}
17 d1(){ if (sndchck==false)
18 { c!check();sndchck=true;}
19 if (wait==false) b!b3();
20 else self !d1();}}

Fig. 2. Privacy-Preserving Example in Rebeca.

5 Conclusion

We addressed data privacy in distributed systems when actors communicate
through message passing. The privacy is violated when sensitive data is inferred
from the sequences of messages. Such inferences are possible when a legitimate
participant of the system acts as a HBC adversary. For the sake of efficiency,
we proposed a synchronization protocol by which actors can be coordinated in
a distributed manner.

References

1. Paverd, A., Martin, A., Brown, I.: Modelling and Automatically Analysing Pri-
vacy Properties for Honest-but-Curious Adversaries. Technical report, Available at:
https://www.cs.ox.ac.uk , (2014)

2. Hazay, C., Lindell, Y.: A Note on the Relation between the Definitions of Security
for Semi-Honest and Malicious Adversaries. In: IACR : 551 (2010)

3. Imam, S.M., Sarkar, V.: Selectors: Actors with Multiple Guarded Mailboxes. In:
AGERE!14 , pp. 114. ACM, New York (2014)

4. Sirjani, M., Movaghar, A., Shali, A., de Boe, F.S.: Modeling and Verification of
Reactive Systems using Rebeca. J. Fundamenta Informaticae. 63, 385410 (2004)

5. G. Agha. ACTORS - a model of concurrent computation in distributed systems.
MIT Press series in artificial intelligence. MIT Press, 1990.

6. C. Hewitt. Viewing control structures as patterns of passing messages. Artif. Intell.,
8(3):323–364, 1977.

257

www.manaraa.com

Author Index

A
Accattoli, Beniamino 171
B
Bajelan, Fateme 219
Baquero, Carlos 156
Barbon, Gianluca 63
Barbosa, Luis 48
Bonchi, Filippo 93
C
Cledou, Guillermina 48
D
Damiani, Ferruccio 16
Demeyer, Serge 204
Din, Crystal Chang 32
E
Ebnenasir, Ali 78
G
Ghassemi, Fatemeh 140, 219, 254
Gkolfi, Anastasia 32
Gruner, Stefan 1
Guerrieri, Giulio 171
H
Haghighi, Hassan 125, 250
Houshmand, Mahdi 109
J
Jafari Monfared, Mohamad 250
Johnsen, Einar Broch 32
K
Khosravi, Ramtin 140, 254
Klinkhamer, Alex P. 78
Kühn, Eva 235
L
Lee, Matias David 93
Leroy, Vincent 63
Lienhardt, Michael 16
M
Monemi Bidgoli, Atieh 125
Mousavi, Mohammadreza 189
Murgia, Alessandro 204
P
Paolini, Luca 16
Parsai, Ali 204

www.manaraa.com

Paydar, Samad 109
Proença, José 48, 156
R
Rahimi Nassab, Zahra 250
Riahi, Shahrzad 140
Rot, Jurriaan 93
S
Sabahi Kaviani, Zeynab 219
Sabouri, Hamideh 125, 250
Salaün, Gwen 63
Samadi, Mahboubeh 254
Sibanda, Prince 1
Steffen, Martin 32
T
Taromirad, Masoumeh 189
Timm, Nils 1
Y
Yu, Ingrid Chieh 32

